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DEEP LEARNING

FEEDFORWARD NEURAL NETWORKS

Input layer Hidden layer ~ Output layer

Multilayer
Perceptron
(MLP)
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f1 = h" o g" with {g” e T W b T
A" R —» R*™  h"(x) = (h"(x1),...,h"(x,)) ",
where:
» N is the number of layers and K is the number of neurons.
> W' = (wj) € R“%-1and b" are the weights and biases.
» h"is a non-linear activation function: ReLU, sigmoid, softmax, etc.
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DEEP LEARNING

TRAINING AND EVALUATION

1. The loss function £ quantifies the goodness of the model to
perform a task.

» Regression: L(y, D) = %Z?Z:'] Ym — tml*.
» Classification: £(y,D) = — >M_ S8t log(Vm).



DEEP LEARNING

TRAINING AND EVALUATION

1. The loss function £ quantifies the goodness of the model to

perform a task.

2. The dataset D is divided into training Dy and test D; sets.
Using gradient descent, the weights are updated to

minimize the loss:

W™ — pVL(W") — WP,
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DEEP LEARNING

TRAINING AND EVALUATION

1. The loss function £ quantifies the goodness of the model to
perform a task.

2. The dataset D is divided into training Dy and test D; sets.
Using gradient descent, the weights are updated to
minimize the loss:

WP — pVL(WP) = WP, b — gV L(b") — b7,

3. The gradient is computed with the backpropagation
algorithm.
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DEEP LEARNING

TRAINING AND EVALUATION

1. The loss function £ quantifies the goodness of the model to
perform a task.

2. The dataset D is divided into training Dy and test D; sets.
Using gradient descent, the weights are updated to
minimize the loss:

WP — pVL(WP) = WP, b — gV L(b") — b7,

3. The gradient is computed with the backpropagation
algorithm.

4. The performance of the model is evaluated with Ds:
» Accuracy, Intersection over Union (loU), etc.



DEEP LEARNING

CONVOLUTIONAL NEURAL NEWORKS (CNNS)
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DEEP LEARNING

“
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In neural networks...

The output of each layer is an abstraction of the input, called
latent representation, and constitutes a reduced and
meaningful representation of the data.

What if we analyze the topology of the latent representations?
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2. TDA



TOPOLOGICAL DATA ANALYSIS (TDA)

Vietoris-Rips Complex construction Persistence diagram
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TOPOLOGICAL DATA ANALYSIS (TDA)

Vietoris-Rips Complex construction Persistence diagram
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Persistence diagram Persistence landscape { Ak }k €Ny

N | )\k(t) = kmaXpepD/\p(t),
A m .
- N - Ap(t) = max{0, min{t — b, d — t}},
witht € R, p = (b,d) € PD.




3. Analyzing MLPs
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ACTIVATION LANDSCAPES \?

Latent space
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Depends on:

- Network initialization

(weights & data)
R AU L4

- Training es A
Training threshold Persistence landscape

Matthew Wheeler et al. "Activation landscapes as a topological summary of neural
network performance", IEEE Int. Conf. on Big Data, 2021.



EXPERIMENTS

SYNTHETIC DATA

» Two categoris: Cq with 9 disks and C; as the complement.

» 100 MLPs trained with different initializations.

» Compute’ the average activation landscape for class C,, each
layer and selection of training threshold s € S,

100
{\%s], -+, AV[s]}ses, AR[S]Z&);)\R[S,H R e{0,...,N},

where AR [s, j] corresponds to the j-th MLP and threshold s.

1https ://github.com/jjbouza/nn-activation-landscapes
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https://github.com/jjbouza/nn-activation-landscapes

SYNTHETIC DATA

EXPERIMENTS
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» The first layer detects 9 holes.

» The activation landscapes of a fully trained network accentuate
the most significant topological features of the activations.

13



EXPERIMENTS

REAL DATA
» MNIST dataset.

» 10 MLPs trained with different initializations.

» Compute the average activation landscape for each layer
and selection of training threshold over choices of trained
networks and batch of input data.

Y. LeCun et al. "Gradient-based learning applied to document recognition.”
Proceedings of the IEEE, 1998.
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EXPERIMENTS

REAL DATA
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» The activation landscape of the last layer detects the
clustering by classes in 1D subspaces.
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EXPERIMENTS

Activation landscapes...

» Provide a complete summary of the persistent homology of
the activations in each layer.

» llluminate aspects of training ddynamics.
» Show that topological complexity increases with training...

» but does not decrease monotonically with each layer,
contradicting previous observations.3

3Grego‘[y Naitzat et al. "Topology of deep neural networks". J. Mach. Learn. Res,,
2020.
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4. Analyzing CNNs
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LATENT LANDSCAPES

w 7
yi X:X/*W, Wekakxn xn
% x € Rhxwxn is 3 |atent
h % representation of the input image
. n which codes contextual
T ij € R information:

» Each filter W(-, -, -, c) € Rk*k*n" detects the presence of a
feature by regions (a pixel and its neighbors).

» Each unit x(i,j, c) encodes the value of that feature in a
certain area.

By considering all filters, channel vectors x; := x(i,j, -) are latent
representations of a region that encodes contextual information.

Clara I. Lopez-Gonzalez et al. "Analyzing and interpreting CNNs using latent space
topology", Neurocomputing, 2024.
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LATENT LANDSCAPES
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» Close x;; = areas with similar contextual information.

» Connections between x; in the Rips = regions with similarities =
same feature's category.

» Holes created/destroyed = categories distinguished =- richer
encoded information.

» Trained NN = code varied features = interesting non trivial
topology.

» Homogeneous activations =- trivial topology = poorer
performance.

https://github.com/claraisl/cnn-latent-landscapes
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https://github.com/claraisl/cnn-latent-landscapes

EXPERIMENTS
EVOLUTION OF INFORMATION
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Alex Krizhevsky, "Learning multiple layers of features from tiny images, 2009. 20



EXPERIMENTS

EVOLUTION OF INFORMATION

ReLUI1 ReLU21 ReLU32 ReLU33 ReLU43 ReLUS1 ReLU52 ReLU53
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» Different classes could be distinguished by the last layer latent
landscape, even detecting similarities between them.



EXPERIMENTS

EXPLAINING PERFORMANCE

output
segmentation
map

= conv 3x3, ReLU
‘copy and crop
§ max pool 2x2
4 up-conv 2x2
= conv 1x1

Semantic segmentation
with U-Net on Crop Row
Benchmark Dataset:

» RGBimages.

» Pseudo-multiband
images (Mx models).

RGB Pseudo-multiband

Add 5 pseudo-bands
built from RGB

using vegetation indices
(ExG, ExCR, CIVE, GLI, COM)

Ivan Vidovic et al. "Crop row detection by global energy minimization", Ptrn.

Recognit., 2016.

Olaf Ronneberger et al. "U-net: Convolutional networks for biomedical image

segmentation." Int. Conf. MICCAI, 2015.
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M2 Ml

M3

RGB M4

EXPERIMENTS
EXPLAINING PERFORMANCE

El1-ReLUl E2-ReLU2 B-ReLUl B-ReLU2 DI-UpReLU DI1-ReLU1 D2-UpReLU D2-ReLU2 D3-ReLU2
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» The UpRelU layers before the skip connections do not store
relevant information.

» RGB is neither capable of capturing complex and diverse features,
nor of benefiting from the skip connections.

» The difference within Mx is explained by comparing how they
codify the information provided.

23



5. Explainable Artificial Intelligence
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... EXPLAINABLE ARTIFICIAL INTELLIGENCE

This is known as explainability and falls within eXplainable
Artificial Intelligence (XAl).

|
XAl is a collection of methods that allow us to explain, interpret
and understand the decision and predictions made by an Al
model.

XAl is a recent and relevant field, given the use of black box
algorithms in areas like medicine:

> |tis important to ensure that the right decisions are being
made correctly

25



GRAD-CAM

OTHER METHODS

Let I be the input image and S?(/) the output of the network for class g.

Grad-CAM is computed as:

1 S
RelU (Z alx(:, -70)) e = Wj(c):)
5 2

i

E1-ReLU1 E2-ReLU2 B-ReLU1 B-ReLU2 DI1-UpReLU D1-ReLU1 D2-UpReLU D2-ReLU2 D3-ReLU2

M4 M1

RGB

Greenness  Soil ~ Greenness  Soil  Greenness  Soil

Ramprasaath R. Selvaraju et al. "Grad-CAM: Visual explanations from deep
networks via gradient-based localization", ICCV, 2017.
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OTHER METHODS
OCCLUSION SENSITIVITY

Consists in occluding regions of the input image and measuring the
change in the output.

EI-ReLU1 E2-ReLU2 B-ReLUl  B-ReLU2 DI1-UpReLU DI1-ReLUl D2-UpReLU D2-ReLU2 D3-ReLU2

M1

RGB

Crop Row Dataset.

ReLU11 ReLU21 ReLU32 ReLU33 ReLU43 ReLU51 ReLU52 ReLU53

CIFAR-10, airplane.

Matthew D. Zeiler et al. "Visualizing and understanding convolutional networks",
ECCV, 2014. 27



OTHER METHODS
TOPOACT

Visualization that show the shape of the activation space and the
relationships within a layer:

» Point cloud of channel vectors obtained by randomly sampling a
single spatial activation from each input.

» Mapper construction built from these point cloud to summarize
clusters and cluster relations behind neuron activations.
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» Feature visualization applied to channel vectors and averaged
channel vectors per cluster.

Archit Rathore et al. "TopoAct: Visually exploring the shape of activations in deep
learning", Computer Graphics, 2021.
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OTHER METHODS

TOPOACT

Captures topological structures, such as branches (separations
among classes) or loops (different aspects of the same object),
in the space of activations:

https://tdavislab.github.io/TopoAct/

TopoAct
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https://tdavislab.github.io/TopoAct/

OTHER METHODS

PCA
Instead of computing latent landscapes, what if we just perform PCA
on the latent space?

» Knowledge about how the coded features are distributed and how
varied they are is lost.
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2D PCA projections of the channel vectors.
30



Thank you
for your attention!

Feel free to get in touch: claraisl@ucm.es
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