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DEEP LEARNING
FEEDFORWARD NEURAL NETWORKS

x0
1

x0
2

x0
3

Input layer

w1
ij

x1
1

x1
2

x1
3

x1
4

x1
5

Hidden layer

w2
ij

f1(x0)

y1

y2

Output layer

Multilayer

Perceptron

(MLP)

y : RK0 f1−→ RK1 f2−→ · · · fN−1
−−−→ RKN−1 fN−→ RKN

fn = hn ◦ gn with

{
gn : RKn−1 → RKn , gn(x) = Wnx + bn,

hn : RKn → RKn , hn(x) = (hn(x1), . . . , hn(xKn))
⊤,

where:
▶ N is the number of layers and Kn is the number of neurons.
▶ Wn = (wn

ij) ∈ RKn×Kn−1 and bn are the weights and biases.
▶ hn is a non-linear activation function: ReLU, sigmoid, softmax, etc.
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DEEP LEARNING
TRAINING AND EVALUATION

1. The loss function L quantifies the goodness of the model to
perform a task.
▶ Regression: L(y,D) = 1

2
∑M

m=1 ∥ym − tm∥2.
▶ Classification: L(y,D) = −∑M

m=1
∑KN

n=1 tml log(yml).
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DEEP LEARNING
TRAINING AND EVALUATION

1. The loss function L quantifies the goodness of the model to
perform a task.

2. The dataset D is divided into training D0 and test D1 sets.
Using gradient descent, the weights are updated to
minimize the loss:

Wn − η∇L(Wn) → Wn, bn − η∇L(bn) → bn,
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DEEP LEARNING
TRAINING AND EVALUATION

1. The loss function L quantifies the goodness of the model to
perform a task.

2. The dataset D is divided into training D0 and test D1 sets.
Using gradient descent, the weights are updated to
minimize the loss:

Wn − η∇L(Wn) → Wn, bn − η∇L(bn) → bn,

3. The gradient is computed with the backpropagation
algorithm.
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1(g11)

x2
1

x2
2

δ22 = δw3
12ḣ
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DEEP LEARNING
TRAINING AND EVALUATION

1. The loss function L quantifies the goodness of the model to
perform a task.

2. The dataset D is divided into training D0 and test D1 sets.
Using gradient descent, the weights are updated to
minimize the loss:

Wn − η∇L(Wn) → Wn, bn − η∇L(bn) → bn,

3. The gradient is computed with the backpropagation
algorithm.

4. The performance of the model is evaluated with D1:
▶ Accuracy, Intersection over Union (IoU), etc.
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DEEP LEARNING
CONVOLUTIONAL NEURAL NEWORKS (CNNS)
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DEEP LEARNING
BLACK BOX
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In neural networks...
The output of each layer is an abstraction of the input, called
latent representation, and constitutes a reduced and
meaningful representation of the data.

Idea
What if we analyze the topology of the latent representations?
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TOPOLOGICAL DATA ANALYSIS (TDA)

Vietoris-Rips Complex construction

P Rips1(P)Rips1(P) Rips1,3(P)Rips1.3(P) Rips2(P)Rips2(P)

Persistence diagram

Ripsα0
(P) Ripsα1

(P) · · · Ripsαn
(P) α0 < · · · < αn

H1(Ripsα0
(P)) H1(Ripsα1

(P)) · · · H1(Ripsαn
(P))

H1 H1 H1

{λk}k∈N,

λk(t) = kmaxp∈PDΛp(t),

Λp(t) = max{0,min{t− b, d− t}},

with t ∈ R, p = (b, d) ∈ PD.
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ACTIVATION LANDSCAPES λR

MLPS

Batch of
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xR ∈ RKR

xR = (fR ◦ · · · ◦ f 1)(x0)
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)

Persistence
Diagram
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Persistence landscape

Depends on:

- Network initialization
(weights & data)

- Training threshold

Matthew Wheeler et al. "Activation landscapes as a topological summary of neural
network performance", IEEE Int. Conf. on Big Data, 2021.
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EXPERIMENTS
SYNTHETIC DATA

▶ Two categoris: C1 with 9 disks and C2 as the complement.

▶ 100 MLPs trained with different initializations.

▶ Compute1 the average activation landscape for class C2, each
layer and selection of training threshold s ∈ S,

{λ0[s], · · · , λN[s]}s∈S, λR[s] =
1

100

100∑

j=1

λR[s, j] R ∈ {0, . . . ,N},

where λR[s, j] corresponds to the j-th MLP and threshold s.
1https://github.com/jjbouza/nn-activation-landscapes

https://github.com/jjbouza/nn-activation-landscapes
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EXPERIMENTS
SYNTHETIC DATA

▶ The first layer detects 9 holes.
▶ The activation landscapes of a fully trained network accentuate

the most significant topological features of the activations.
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EXPERIMENTS
REAL DATA

▶ MNIST dataset.

▶ 10 MLPs trained with different initializations.
▶ Compute the average activation landscape for each layer

and selection of training threshold over choices of trained
networks and batch of input data.

Y. LeCun et al. "Gradient-based learning applied to document recognition."
Proceedings of the IEEE, 1998.
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EXPERIMENTS
REAL DATA

▶ The activation landscape of the last layer detects the
clustering by classes in 1D subspaces.
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EXPERIMENTS

Activation landscapes...
▶ Provide a complete summary of the persistent homology of

the activations in each layer.
▶ Illuminate aspects of training ddynamics.
▶ Show that topological complexity increases with training...
▶ but does not decrease monotonically with each layer,

contradicting previous observations.3

3Gregoty Naitzat et al. "Topology of deep neural networks". J. Mach. Learn. Res.,
2020.
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LATENT LANDSCAPES
CNNS

x
xij ∈ Rn

n

h

w
x = x′ ∗W, W ∈ Rk×k×n′×n

x ∈ Rh×w×n is a latent
representation of the input image

which codes contextual
information:

▶ Each filter W(·, ·, ·, c) ∈ Rk×k×n′ detects the presence of a
feature by regions (a pixel and its neighbors).

▶ Each unit x(i, j, c) encodes the value of that feature in a
certain area.

By considering all filters, channel vectors xij := x(i, j, ·) are latent
representations of a region that encodes contextual information.

Clara I. López-González et al. "Analyzing and interpreting CNNs using latent space
topology", Neurocomputing, 2024.
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LATENT LANDSCAPES
CNNS

Latent Landscapes Step by Step
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▶ Close xij = areas with similar contextual information.
▶ Connections between xij in the Rips ⇒ regions with similarities =

same feature’s category.
▶ Holes created/destroyed ⇒ categories distinguished ⇒ richer

encoded information.
▶ Trained NN ⇒ code varied features = interesting non trivial

topology.
▶ Homogeneous activations ⇒ trivial topology ⇒ poorer

performance.
https://github.com/claraisl/cnn-latent-landscapes

https://github.com/claraisl/cnn-latent-landscapes
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EXPERIMENTS
EVOLUTION OF INFORMATION

Classification of CIFAR-10 with
VGG-16.

Alex Krizhevsky, "Learning multiple layers of features from tiny images, 2009.
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EXPERIMENTS
EVOLUTION OF INFORMATION

▶ Different classes could be distinguished by the last layer latent
landscape, even detecting similarities between them.
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EXPERIMENTS
EXPLAINING PERFORMANCE

Semantic segmentation
with U-Net on Crop Row
Benchmark Dataset:
▶ RGB images.
▶ Pseudo-multiband

images (Mx models).

RGB

+

Pseudo-multiband

Add 5 pseudo-bands
built from RGB

using vegetation indices
(ExG, ExGR, CIVE, GLI, COM)

Ivan Vidovic et al. "Crop row detection by global energy minimization", Ptrn.
Recognit., 2016.

Olaf Ronneberger et al. "U-net: Convolutional networks for biomedical image
segmentation." Int. Conf. MICCAI, 2015.
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EXPERIMENTS
EXPLAINING PERFORMANCE

▶ The UpReLU layers before the skip connections do not store
relevant information.

▶ RGB is neither capable of capturing complex and diverse features,
nor of benefiting from the skip connections.

▶ The difference within Mx is explained by comparing how they
codify the information provided.
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... EXPLAINABLE ARTIFICIAL INTELLIGENCE

This is known as explainability and falls within eXplainable
Artificial Intelligence (XAI).

XAI is a collection of methods that allow us to explain, interpret
and understand the decision and predictions made by an AI
model.

XAI is a recent and relevant field, given the use of black box
algorithms in areas like medicine:
▶ It is important to ensure that the right decisions are being

made correctly
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OTHER METHODS
GRAD-CAM

Let I be the input image and Sβ(I) the output of the network for class β.
Grad-CAM is computed as:

ReLU

(∑
c

αβ
c x(·, ·, c)

)
, αβ

c =
1
hw
∑
i,j

∂Sβ(I)
∂x(i, j, c)

.

Ramprasaath R. Selvaraju et al. "Grad-CAM: Visual explanations from deep
networks via gradient-based localization", ICCV, 2017.
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OTHER METHODS
OCCLUSION SENSITIVITY

Consists in occluding regions of the input image and measuring the
change in the output.

Crop Row Dataset.

CIFAR-10, airplane.

Matthew D. Zeiler et al. "Visualizing and understanding convolutional networks",
ECCV, 2014.
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OTHER METHODS
TOPOACT

Visualization that show the shape of the activation space and the
relationships within a layer:
▶ Point cloud of channel vectors obtained by randomly sampling a

single spatial activation from each input.
▶ Mapper construction built from these point cloud to summarize

clusters and cluster relations behind neuron activations.

▶ Feature visualization applied to channel vectors and averaged
channel vectors per cluster.

Archit Rathore et al. "TopoAct: Visually exploring the shape of activations in deep
learning", Computer Graphics, 2021.
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OTHER METHODS
TOPOACT

Captures topological structures, such as branches (separations
among classes) or loops (different aspects of the same object),
in the space of activations:
https://tdavislab.github.io/TopoAct/

https://tdavislab.github.io/TopoAct/
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OTHER METHODS
PCA

Instead of computing latent landscapes, what if we just perform PCA
on the latent space?
▶ Knowledge about how the coded features are distributed and how

varied they are is lost.

2D PCA projections of the channel vectors.
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Thank you
for your attention!

Feel free to get in touch: claraisl@ucm.es
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