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• Filtration: 𝐹: 𝑃, ≤ → Simp, 𝐹 𝑝 ⊂ 𝐹 𝑞 , 𝑝 ≤ 𝑞

• Persistence module:   𝑀: (𝑃, ≤) → Vec௞

• Single-parameter: 𝑃, ≤ = (ℝ, ≤)

• Multiparameter: P, ≤ = ℝ௡, ≼

Structure Theorem:
(Zomorodian and Carlsson, 

2005; Crawley-Boevey, 2015)

If 𝑃, ≤ = ℝ, ≤ ⇒ 𝑀௝ =  Ι[𝑏௝, 𝑑௝)
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Matching between 
PDs, from GUDHI 
documentation

Metrics over barcodes and PDs

• Bottleneck distance:

• Wasserstein distance:

Stability results: 
𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑛 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 ≤ 𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎



Cohomological interval matching
Joint work with Anthea Monod and Anna Song, https://arxiv.org/abs/2209.15446



Two samples of N = 350 points with a gaussian noise of scale 0.1 added
over a flat torus of radii R = 2 and r = 1

Cycle Matching
(Reani & Bobrowski, 2021)



Obtain filtrations 
+

Compute PH

Cycle Matching
(Reani & Bobrowski, 2021)



𝑍 = 𝑋 ∪ 𝑌

𝑋 𝑌

𝑔𝑓

Cycle Matching
(Reani & Bobrowski, 2021)



𝑍௧ ≔ 𝑉𝑅௧ 𝑍

𝑋௧ ≔ 𝑉𝑅௧(𝑋) 𝑌௧ ≔ 𝑉𝑅௧(𝑌)

𝑔௧𝑓௧

Cycle Matching
(Reani & Bobrowski, 2021)



𝑋௦ 𝑋௧

𝑍௦ 𝑍௧

𝑓௧𝑓௦ ⟹

𝑖(𝑠 ≤ 𝑡)

𝐻௞(𝑋௦) 𝐻௞(𝑋௧)

𝐻௞(𝑍௦) 𝐻௞(𝑍௧)

𝑓௧,∗𝑓௦,∗

𝑖∗(𝑠 ≤ 𝑡)

𝑖∗ 𝑠 ≤ 𝑡 : Im 𝑓௦,∗ ⟶ Im(𝑓௧,∗)

Image-persistence module:

Image-persistence

𝑓∗: 𝐻௞ 𝑋 → 𝐻௞(𝑍)

Im 𝑓∗(𝐻௞ 𝑋 ) ≅  
𝑓 Ker 𝜕௞

௑

Im 𝜕௞ାଵ
௓ ∩ 𝑓 Ker 𝜕௞

௑

Here the 0 homology of X has 3 
components but inside of Z its all one 

component

Here the 1 homology of X has 1 
cycle but inside of Z this cycle is a 

boundary

(Cohen-Steiner et al., 2009)𝑓 commutes with 
boundary maps 𝑓௧ ∘ 𝜕௞

௑೟ = 𝜕௞
௓೟ ∘ 𝑓௧



𝐻∗(𝑍௧)

𝐻∗(𝑋௧) 𝐻∗(𝑌௧)

(𝑔௧)∗𝑓௧ ∗

Cycle Matching
(Reani & Bobrowski, 2021)



Image-persistence of X inside of Z Image-persistence of Y inside of Z

𝐼𝑚 𝑓௧ ∗      ⊂      𝐻∗ 𝑍௧      ⊃      𝐼𝑚 𝑔௧ ∗

𝐻∗(𝑋௧) 𝐻∗(𝑌௧)

(𝑔௧)∗𝑓௧ ∗ Image-persistence
(cycles in X and Y up to 

boundaries in Z)

(Reani & Bobrowski, 2021)

Cycle Matching



Image-persistence 
of X inside Z

Image-persistence 
of Y inside Z

Persistence 
diagram of X

Persistence 
diagram of Y

(Reani & Bobrowski, 2021)

Cycle Matching



PH computations

PH is expensive to compute
• Most naïve algorithm based on 

a matrix reduction algorithm 
via Gauss elimination

• Cubic complexity in number of
simplices

Ripser (Bauer, 2021)
• State-of-the-art for PH 

computations
• Clearing algorithm
• Persistent cohomology
• Several other 

optimizations

Image-persistence
• Optimizations of ripser

were extended
• Ripser-image (Bauer and 

Schmahl, 2022)



• Extended definitions of interval matching to make it compatible with a wider 
spectrum of filtrations

Theoretical

• Provided state-of-the-art-code for interval matching
• Proposed a parallelisation pipeline that accelerated computations to minutes 

using the HPC facilities
• Showcased real-life applications o this machinery

Practical

Fast cohomological interval matching
Joint work with Anthea Monod and Anna Song, https://arxiv.org/abs/2209.15446



Tracking topological features

Video of primitive heartbeat from an embryo 
zebrafish, from Scherz et al. (2008)

Stack of 2D images of the primitive 
Lateral Line from an embryo 

zebrafish, from Hartmann et al. (2008)
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• Introduced in the early 1990s in the work of Frosini as “size functions”

• Landi and Frosini (1997) provided an algebraic reinterpretation of size functions in terms of formal series that allowed 
them to construct several pseudo-distances on the size function space

• Deformation pseudo-distance 
• Haussdorff pseudo-distance (renamed by d’Amico et al. (2003, 2006, 2010) as the matching distance)
• 𝑳𝒑 pseudo-distance

• Later this was reinterpreted in persistence theory: barcodes prevailed because of rigorous metrics
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What about multiparameter persistence? 

Structure Theorem:
(Zomorodian and Carlsson, 

2005; Crawley-Boevey, 2015)

• If 𝑃, ≤ = ℝ, ≤ ⇒ 𝑀௝ =  Ι 𝑏௝, 𝑑௝

• If 𝑃, ≤ = ℝ௡, ≼ , indecomposables have 
wild representation type

No hope for a direct, analogous definition of barcode 
on MPH (Carlsson & Zomorodian, 2009)
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What about multiparameter persistence? 

Patel (2018), Kim and Mémoli (2021), McCleary and Patel (2022)

Generalised persistence diagrams



Rank functions and rank invariants in Data Analysis

Why rank invariants are not as popular as barcodes in Data Analysis?

1. Theoretical issues: less established stability theory

2. Practical issues: not so well known how they perform in data analysis task

• Implemented in a descriptive statistics setting for FPCA by Robins and Turner (2016)

• What about inferential, supervised learning tasks?

Advantages

• Easily generalisable to  MPH.
• Computable from PDs and using RIVET (https://github.com/Qiquan-Wang/rank_stability)
• Benefitting from the methods of Functional Data Analysis (Ramsay 2002, 2005). 

• Tools to avoid the curse of dimensionality



Computable Stability for Persistence Rank Functions ML
Joint work with Qiquan Wang, Pierre Faugère, Anthea Monod and Gregory Henselman-

Petrusek, https://arxiv.org/abs/2307.02904



Rank function based FSVM

• Distinguish healthy individuals 
from post-stroke patients

• Input data: RR-sequences 
• Performance > 80%, better than 

non-persistence-based methods 
and on par with more elaborated 
persistence-based techniques 
(Graff et al., 2021)

Hypothesis testing for 
biparameter rank functions

• Assess the impact of various 
types of noise on data

• Input data: point clouds with 
different noise added

• Validate the resilience to outliers 
of biparameter rank functions 
compared with single-parameter 
rank functions

Lung tumour classification for 
biparameter rank functions

• Implemented non-parametric 
supervised methods (k-NN and 
Functional Maximum depth) for 
lung tumour classification

• Input data: Computed 
Tomography images

• Improved results with respect to 
previous persistence-based 
methods (Vandaele et al., 2023)

Functional Data Analysis using Rank Functions



Method 1: FSVM

Classical SVM (Boser et al., 1992)

Margin for an SVM trained with samples 
from two classes, from Wikipedia

FSVM (Rossi et al., 2005)



FSVM on Single-Parameter Rank Functions

• 86 sequences of 512 RR series 
(beat-to-beat time intervals) 
extracted from ECGs

• 2 groups of people in a similar 
age category: 

• 46 healthy individuals
• 40 patients with recent 

stroke episodes

Data

• Sublevel set filtrations from the 
RR series based on height 
function of y-coordinate.

• Computed 0-dimensional PH 
and obtained 𝛽ଵ, … , 𝛽଼଺ rank 
functions

• Centred the functions to have 
mean 0

Topological representation

Trained FSVM (soft-margin 
approach) classifiers using
• Linear kernel
• GRBF kernel
• Polynomial kernel 𝑑 =  2, 3, 5
Input
• Original rank functions
• FPCA 
• Haar Wavelet basis

FSVM



FSVM on Single-Parameter Rank Functions

Projected rank functions on         
Discretized rank functions

Kernel      
Wavelet basis functions FPCA basis functions 

AUC-ROC Accuracy                AUC-ROC Accuracy                            AUC-ROC Accuracy                        

0.40439.70%0.68166.80%0.40839.50%Linear           

0.75675.00%0.50250.30%0.76275.80%GRBF              

0.84284.00%0.84284.20%0.82982.60%Polynomial (d=2) 

0.81680.30%0.82982.00%0.82981.60%Polynomial (d=3) 

0.78676.60%0.77475.50%0.77576.00%Polynomial (d=5) 

Accuracy and AUC-ROCs of classifiers over ten iterations of five-fold cross validation.

• Non-persistence approaches using heart rate variability frequency and time domain parameters (Graff et 
al., 2021) only achieved AUC-ROCs of 0.79 and 0.75 respectively

• A persistence-based approach, based on selecting a wide range of topological indices based on 
vectorisations of the PD (Graff et al., 2021) has AUC-ROC 0.83, on par with our method.



Method 3: FDA supervised classification methods

• Classification technique in both multivariate and 
functional data

• The class of a new point is based on majority vote 
of k-closest neighbors. 

• This method is adaptable to different metric 
spaces: we work with rank invariants and the 𝐿ଶ

metric.

k-Nearest Neighbors (Cover and Hart, 1967)

• For a collection of functions 𝑓ଵ  … , 𝑓௡ ∶ 𝑋 →  ℝ, define a band

𝐵 𝑓ଵ, … , 𝑓௡ ≔ 𝑥, 𝑦 ∶  𝑥 ∈ 𝑋, min
௜ୀଵ,…,௡

𝑓௜ 𝑥 ≤ 𝑦 ≤ max
௜ୀଵ,…,௡

𝑓௜ 𝑥  

• Band depth: number of times a function lies in the band formed 
by a subcollection of functions.

• Given classes of functions and a new function 𝑓, 𝑓 will be 
assigned to the class that maximizes the band depth.

Functional Maximum Depth (López-Pintado and Romo, 2009)



Lung tumour classification using rank invariants

• 115 chest CT scans
• 29 benign cases (24 with contrast)
• 41 primary malignant (17 with 

contrast)
• Following Vandaele et al. (2023) 

converted scans to point clouds of 
landmarks on the tumour surfaces

Data

• Degree-Rips filtration

• Vietoris-Rips combined with the x, y and z 
height functions, building up the tumour 
in those directions 

• Computed bi-parameter rank invariants 
(0-homology)

Topological representations

• Trained k-NN and FMD classifiers to 
classify between benign/malignant 

• 75/25 split training and test

• Average over 50 iterations

Classification



MBD k-NN     
Filtration

AUC-ROC Accuracy AUC-ROC Accuracy 

76.876.983.083.8z-Rips      
Primary Benign 

vs 
Malignant 

(with contrast)

79.980.779.180.2x-Rips      

79.380.078.579.6y-Rips      

72.772.579.180.0Degree-Rips 

MBD k-NN     
Filtration

AUC-ROC Accuracy AUC-ROC Accuracy 

69.168.859.961.4z-Rips      

Primary Benign 
vs 

Malignant 

68.267.964.264.4x-Rips      

71.070.060.461.2y-Rips      

72.070.861.863.3Degree-Rips 

Previous studies using single-parameter persistent homology by Vandaele et al. (2023) 
achieved at most AUC-ROC of 67.7 for data without contrast and 78.0 with contrast

Lung tumour classification using rank invariants



Summary

Do rank functions and rank invariants perform well in inferential settings?

• We produced three different applications of inferential and supervised learning tasks to real 
and simulated data

• In all of them we observed an improvement in performance with respect to

• Non-persistence-based methods

• (If rank invariants were used) single-parameter based methods

• We believe that marrying FDA methods with rank invariants opens the door to many tools in TDA 
which are worth exploring in data-driven applications



Stability of rank functions

M
at
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di
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• Some stability results for the matching distance in size functions in the work of Landi and Frosini in the 1990s

• The matching distance can be extended to manifolds defined from vector fields (multiparameter persistence)

• Cerri et al. (2013) prove that the matching distance is stable under some conditions 

• Landi (2018) shows that it is also stable with respect to the interleaving distance

• Kerber et al. (2019) show that for biparameter persistence, the matching distance is computable in polynomial 
time

• It does not provide Hilbert structure

𝐿
௣

di
st

an
ce • Provides Hilbert structure and is easily computable

• Known to have worse stability behaviour, but to what extent?

• Only study present in the literature by Skraba and Turner (2021) for weighted metrics. 

• 𝐿௣ distances are in fact rigorous metrics when there are no essential cycles.



Stability with respect to bottleneck distance



Stability with respect to 1-Wasserstein distance



Stability of rank invariants



Summary

What can we say about the stability of rank functions and rank invariants with 𝐿௣ metrics?

• Rank functions with 𝐿௣ metrics and barcodes with the bottleneck distance have very different 
stability behaviour, we need to exclude points close to the diagonal if we want to achieve a 
stability bound

• Leveraging new results concerning the stability of barcodes and the 1-Wasserstein distance, we 
provided stability bounds for rank functions with 𝐿௣ metrics with respect to these

• We also were able to extend this results to multiparameter, rectangle indecomposable modules



Thanks for your attention!


