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* Filtration: F: (P, <) — Simp Structure Theorem:
(Zomorodian and Carlsson,
2005; Crawley-Boevey, 2015)

M~M&---&M,

* Persistence module: M:(P,<) — Vec

+ Single-parameter: (P, <) = (R, <)

« Multiparameter: (P, <) = (R", x) If (P, <) = (R, <) > M; = I[b;, d))
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Matching between H
PDS, from GUDHI Metrics over barcodes and PDs

documentation

A * Bottleneck distance:
b dp(Dq.Ds) := inf sup ||z — d(x
B(D1,D>) ¢:D1_>D2m€£1 |z — é(x)|| o
«®
* Wasserstein distance:
“1/1?

Weoio(Dy, D3) := inf z — o(z)||P
pq(D1.D2) G ezl;l” ”J

Stability results:

metric on invariants < metric on input data







Cycle Matching

(Reani & Bobrowski, 2021)

Two samples of N = 350 points with a gaussian noise of scale 0.1 added
over a flattorus ofradiiR=2and r=1
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Cycle Matching

(Reani & Bobrowski, 2021)
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Cycle Matching

(Reani & Bobrowski, 2021)
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Image-persistence

f commutes with Xt _ AZ: .
boundary maps feo0, =0, °f; (Cohen-Steiner et al., 2009)
i(s<t) (s <t)
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Cycle Matching

(Reani & Bobrowski, 2021)
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Image-persistence of X inside of Z Cycle MatCh i ng Image-persistence of Y inside of Z
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Cycle Matching

(Reani & Bobrowski, 2021)
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PH computations

e Optimizations of ripser
were extended

e Most naive algorithm based on e State-of-the-art for PH
a matrix reduction algorithm computations

via Gauss elimination e Clearing algorithm
e Cubic complexity in number of e Persistent cohomology

simplices  Several other
optimizations

¢ Ripser-image (Bauer and
Schmahl, 2022)




Fast cohomological interval matching

Joint work with Anthea Monod and Anna Song, https://arxiv.org/abs/2209.15446

* Extended definitions of interval matching to make it compatible with a wider
spectrum of filtrations

e Provided state-of-the-art-code for interval matching

* Proposed a parallelisation pipeline that accelerated computations to minutes
using the HPC facilities

e Showcased real-life applications o this machinery




Tracking topological features

Stack of 2D images of the primitive
Lateral Line from an embryo
zebrafish, from Hartmann et al. (2008)

Video of primitive heartbeat from an embryo
zebrafish, from Scherz et al. (2008)
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Let R2t := {(x,y) € {—oc} UR x RU {0} : x < y}.

Given M : R — Vec p.f.d. persistence module, its rank function is defined as

gM . Rt - Z
(x,¥) = rankM(x <y)=dimIm(M(x <y)).

* Introduced in the early 1990s in the work of Frosini as “size functions”

* Landiand Frosini (1997) provided an algebraic reinterpretation of size functions in terms of formal series that allowed
them to construct several pseudo-distances on the size function space
* Deformation pseudo-distance
* Haussdorff pseudo-distance (renamed by d’Amico et al. (2003, 2006, 2010) as the matching distance)
* LP pseudo-distance

* Later this was reinterpreted in persistence theory: barcodes prevailed because of rigorous metrics
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Persistence
Module

Let R?T := {(x,y) € {—oc}UR x RU {c0} : x < y}.

Definition

Given M : R — Vec p.f.d. persistence module, its rank function is defined as

gM. Rt o Z
(x,¥y) +— rankM(x <y)=dimIm (M(x <y)).

o T ={t1,...,ts} C R discrete set of values over which the persistence module changes;
o T =TU{—00,+00};

o S={sp,51,...,5¢} set of real numbers such that s; ; < t; <sj;

@ s_1 =ty=—ooand spy1 =ty ] =400

wh = B(si—1, ) — B(si, s;) + B(si, sj—1) — B(Si—1,5j-1)- (1)



PH pipeline

Persistence
Module

Let R?T := {(x,y) € {—oc}UR x RU {c0} : x <X y}.

Definition

Given M : R — Vec p.f.d. persistence module, its rank function is defined as

gM . R+ o Z
(x,¥y) +— rankM(x <y)=dimIm (M(x <y)).

Definition (Persistence Diagram)
Dgm (M) :={(t;, ;) € TX T : t; < t;}UJ
@ each point (t;, tj) has multiplicity ,wf,
o all the points in the diagonal & = {(x,y) € R>" : x = y} counted with infinite multiplicity.
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What about multiparameter persistence?

Structure Theorem: + If(P,) =R, 2) = M; = I[by,dj)
(Zomorodian and Carlsson, M~M&---&M, « If(P,<) =(R" <), indecomposables have
2005; Crawley-Boevey, 2015) wild representation type

No hope for a direct, analogous definition of barcode

on MPH (Carlsson & Zomorodian, 2009)
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What about multiparameter persistence?

Let R?" := {(x,y) € ({—00} UR)" x (RU {co})" : x X y}.

Given M : R" — Vec p.f.d. persistence module, its rank invariant is defined as

M. Rt o 7
(x,¥) +— rankM(x <y)=dimIm(M(x <y)).

The space of rank invariants for n-dimensional persistence modules will be denoted by Z,.

Generalised persistence diagrams

Patel (2018), Kim and Mémoli (2021), McCleary and Patel (2022)




Rank functions and rank invariants in Data Analysis

Advantages

Why rank invariants are not as popular as barcodes in Data Analysis?
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Computable Stability for Persistence Rank Functions ML

Joint work with Qiquan Wang, Pierre Faugere, Anthea Monod and Gregory Henselman-
Petrusek, https://arxiv.org/abs/2307.02904




Functional Data Analysis using Rank Functions

Rank function based FSVM

Hypothesis testing for

biparameter rank functions

Lung tumour classification for
biparameter rank functions

¢ Distinguish healthy individuals
from post-stroke patients

¢ Input data: RR-sequences

e Performance > 80%, better than
non-persistence-based methods
and on par with more elaborated
persistence-based techniques
(Graff et al., 2021)

¢ Assess the impact of various
types of noise on data

¢ Input data: point clouds with
different noise added

¢ Validate the resilience to outliers
of biparameter rank functions
compared with single-parameter
rank functions

¢ Implemented non-parametric
supervised methods (k-NN and
Functional Maximum depth) for
lung tumour classification

* Input data: Computed
Tomography images

¢ Improved results with respect to
previous persistence-based
methods (Vandaele et al., 2023)



Method 1: FSVM

Classical SVM (Boser et al., 1992)

e Data: (x1,¥1).-..,(Xn,¥n), ¥i = £1 depending on the class x; € R”
belongs to.
@ Hyperplane: wTx + b = 0, w € RP normal vector.

e Hard-margin: if the data is linearly separable we can find two
hyperplanes separating the two classes that maximise the area
between them. This area is the margin.

@ Soft margin: we allow some leeway for wrong classification.

@ Kernel trick for non-linear boundaries: replace dot product by kernel

functions. Popular kernels include polynomial and Gaussian Radial " Margin for an SVM trained with samples
Basis Function (GRBF) kernels from two classes, from Wikipedia

FSVM (Rossi et al., 2005)
e Data: (fi,v1),...,(fa,yn), with f; € H a Hilbert space and y; = £1 depending on the class
of f;.
@ Same formulations as above.

@ Kernels can also be extended to this setting.
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FSVM on Single-Parameter Rank Functions

Topological representation FSVM

Trained FSVM (soft-margin

* 86 sequences of 512 RR series * Sublevel set filtrations from the i
(beat-to-beat time intervals) RR series based on height PP : g
. . * Linearkernel
extracted from ECGs function of y-coordinate.
. .. . . * GRBF kernel
* 2 groups of peoplein a similar * Computed 0-dimensional PH .
. * Polynomial kerneld = 2,3,5
age category: and obtained £, ..., fg¢ rank
A . Input
* 46 healthy individuals functions «  Original rank functions
* 40 patients with recent * Centred the functions to have . chg:A
stroke episodes mean 0 . Haar Wavelet basis
. . Rank function 70
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FSVM on Single-Parameter Rank Functions

Projected rank functions on

Discretized rank functions

FPCA basis functions Wavelet basis functions
Kernel
Linear 39.50% 0.408 66.80% 0.681 39.70% 0.404
GRBF 75.80% 0.762 50.30% 0.502 75.00% 0.756
Polynomial (d=2) 82.60% 0.829 84.20% 0.842 84.00% 0.842
Polynomial (d=3) 81.60% 0.829 82.00% 0.829 80.30% 0.816
Polynomial (d=5) 76.00% 0.775 75.50% 0.774 76.60% 0.786

Accuracy and AUC-ROCs of classifiers over ten iterations of five-fold cross validation.

Non-persistence approaches using heart rate variability frequency and time domain parameters (Graff et
al., 2021) only achieved AUC-ROCs of 0.79 and 0.75 respectively

A persistence-based approach, based on selecting a wide range of topological indices based on
vectorisations of the PD (Graff et al., 2021) has AUC-ROC 0.83, on par with our method.




Method 3: FDA supervised classification methods

k-Nearest Neighbors (Cover and Hart, 1967) Functional Maximum Depth (L6épez-Pintado and Romo, 2009)




Lung tumour classification using rank invariants

Topological representations

115 chest CT scans « Degree-Rips filtration
* 29 benign cases (24 with contrast i - ifi
. 41 rimir mali (nant (17 with ) * Vietoris-Rips combined with the x, yand z Tralnejd N e FMI_:) class@ers to
conptrast) v g height functions, building up the tumour classify between benign/malignant
in those directions e 75/25 split training and test

Following Vandaele et al. (2023)
converted scans to point clouds of
landmarks on the tumour surfaces

e Computed bi-parameter rank invariants * Average over 50 iterations

(0O-homology)

Scan Info
Patient ID: LIDCIDRI-0068
ce s

1250 mm
0.684 mm

nufacturer. GE MEDICAL SYSTEMS
Model name LightSpeed VCT
Convolution kernel STANDARD

Nodule Info

2171500 siice: 130

length (mm)



Lung tumour classification using rank invariants

Filtration

z-Rips 61.4 59.9 68.8 69.1
Primary Benign x-Rips 64.4 64.2 67.9 68.2
Mali\:gsnant y-Rips 61.2 60.4 70.0 71.0
Degree-Rips 63.3 61.8 70.8 72.0

Filtration

z-Rips 83.8 83.0 76.9 76.8
Primary Benign )
VS x-Rips 80.2 79.1 80.7 79.9
Malignant y-Rips 79.6 78.5 80.0 79.3
(with contrast)
Degree-Rips 80.0 79.1 72.5 72.7

Previous studies using single-parameter persistent homology by Vandaele et al. (2023)

achieved at most AUC-ROC of 67.7 for data without contrast and 78.0 with contrast




Summary

Do rank functions and rank invariants perform well in inferential settings?




Stability of rank functions
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Stability with respect to bottleneck distance

For 3 rank function and § > 0, the d-truncated rank function is defined as

65 — 18 ° 1R§+

where IIR§+ is the indicator function of the set ]R(zs+ = {(x,y) € R?* : y > x + 6}

Proposition (Bottleneck stability for truncated rank functions)

Let 1 < p < oo and M be a p.f.d. persistence module with finite intervals in its barcode
decomposition. For every > 0, there exist 1 > 1 > 0 and Ky, > 0 such that any persistence

module N satisfying
dg(Dgm (M), Dgm (N)) < n

also satisfies
|84~ 8Y| < Kiap - ds(Dem (M), Dgm (N7, 2)

In other words, the map (D, dg) — (Z1, LP) which sends each persistence diagram to its
correspondent rank function is locally Holder with exponent 1/p.



Stability with respect to 1-Wasserstein distance

Theorem (Skraba and Turner (2021))

Let f.g : K — R be monotone functions on a finite CW-complex K.
Then

W,(Dgm (f), Dgm (g)) < [|f — &l|co-

Theorem (1-Wasserstein stability for rank functions)

Let p=1, 2; and M be a p.f.d. persistence module with finite intervals in its barcode
decomposition. Then there exists a constant Cp , > 0 such that for any other p.f.d. persistence
module N satisfying Wi (Dgm (M), Dgm (N)) < 1, we have

|8 - ﬁNHp < Cm.p - WA(Dgm (M), Dgm (N))*/?. (3)

In other words, the map (D, W;) — (Z1, L') which sends a persistence diagram to its

corresponding rank function is locally Lipschitz, and the same map between the spaces
(D, Wy) — (Zy, L?) is locally Holder with exponent 1/2.



Stability of rank invariants

Let M, N : R" — Vec be modules decomposing in the intervals {J; : j € J} and {K\ : k € K}.
The p-Wasserstein distance between M and N is defined as

1/p

dw,(M,N) = inf S o 1%)°+ 3T d@h,0P+ Y di(0,1Kk)P
‘ (i) =k JET\Z keK\H(Z)

where ¢ ranges over all injections of subsets Z C 7 into K. )

Let M and N be rectangle decomposable R"-persistence modules. Then, for p = 1, 2 there exist
CM,N,p,n > 0 such that

”BM - ﬁN“p S CM,N,p,n ’ de(Ma N)]./p

A




Summary

What can we say about the stability of rank functions and rank invariants with LP metrics?




Thanks for your attention!



