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Summary

We describe two studies in which topological data analysis was
used for dimensionality estimates.

▶ Estimating the dimensionality of complex networks
using network geometry and persistent homology,
with Meritxell Vila, Aina Ferrà, and María Ángeles Serrano,
in preparation

▶ A topological classifier to characterize brain states:
When shape matters more than variance, with Aina Ferrà,
Gloria Cecchini, Fritz-Pere Nobbe Fisas, and Ignasi Cos,
PLoS ONE (2023) 18(10):e0292049



Dimensionality of Data

Intrinsic dimension is the minimum number of variables
needed to accurately describe the main features of a system.



Difficulties

▶ Failure of the manifold hypothesis: Although data often
distribute across a subset of smaller dimension within an
ambient space, it need not adjust well to a manifold.

▶ Curse of dimensionality: When the ambient dimension
increases, the volume of the space increases so fast that
the available data become sparse.

▶ Peaking phenomenon: The average predictive power of a
classifier first increases as the number of features used is
increased, but beyond a certain dimension it starts
deteriorating instead of improving steadily.

▶ Existence of noise: While the features of a dataset change
remarkably in certain directions, small variations along other
directions may be irrelevant for analysis.



Complex Networks

Main characteristics of complex networks:

▶ Small world phenomenon: Graph distance is useless.

▶ Scale-free (power-law) distribution of nodes: P(κ) ∼ κ−γ

with γ > 2, where κ denotes hidden degree (popularity).

▶ Degree heterogeneity: Average degree is denoted by µ.

▶ Clustering coefficient β (inverse temperature).



Hyperbolic Embeddings

S1 model H2 model



Hyperbolic Embeddings

Internet World Trade



Surrogates

Synthetic graphs are generated through hyperbolic embeddings
in each dimension D using an SD model with the following
probability of connection between nodes i and j :

pij =
1

1 + χβ
ij

, χij =
R∆θij

(µκi κj)1/D .

where R =
[
Γ
(D+1

2

)
N/(2π)

D+1
2

]1/D
is the sphere radius.

N: number of nodes of the original network;
κi : hidden degree of node i in the original network;
∆θij : angular distance between nodes i and j in the SD model.



Extended Persistence of Graphs

Persistence is calculated by means of a degree-based filtration:

Sublevel graphs



Persistence Diagrams

Merging of connected components



Extended Persistence

Extended persistence in homological dimension 1 combines
sublevel graphs with superlevel graphs along the degree filtration.



Persistence descriptors

We use total persistence as numerical descriptor of a
persistence diagram:

TP =
n∑

i=1

(di − bi),

where {(b1,d1), . . . , (bn,dn)} are points in the persistence
diagram of a graph in a given homological dimension.

In this study we focus on homological dimension 1. Thus bi is
the birth degree of the i th cycle and di is the death degree, so
TP is cumulative lifetime of cycles.



Dissimilarity Metrics

Dissimilarity between persistence diagrams can be measured
with the bottleneck distance or using kernels.

The Reininghaus kernel or scale-space kernel is defined as

K (D,D′) =
1

8πσ

∑
p∈D, q∈D′

e−|p−q|2/8σ − e−|p−q|2/8σ,

where q = (d ,b) if q = (b,d), and σ is a scale parameter.

Then a distance between D and D′ is computed as

d(D,D′) =
√

K (D,D)− 2K (D,D′) + K (D′,D′).



Results

We studied two real-world networks:

CElegans-C: Nervous system of Caenorhabditis elegans.

Human1: A connectome of the human brain at one hemisphere.

P. Almagro, M. Boguñá, M. A. Serrano, Detecting the ultra low
dimensionality of real networks, Nature Commun. 13, 6096 (2022)
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Conclusions

▶ Our results are compatible with a low-middle dimension (4-5)
for the human brain connectome and a very low dimension
(1-2) for the CElegans-C nervous system.

▶ Extended persistence in homological dimension 1 of
surrogate graphs in hyperbolic models can estimate
dimensionality of real-world complex networks.

▶ A degree-based filtration of graphs can be useful for
topological data analysis.



Behavioral Neuroscience

In a behavioral neuroscience study carried out in Barcelona
in 2015, each of 11 participants was offered a game with two
sessions of 6 blocks of 108 trials, in which they were playing
alone (4 blocks), with a virtual weak partner (4 blocks), and with
a virtual strong partner (4 blocks).



Behavioral Neuroscience

The dataset consisted of electroencephalogram fragments of
1200 ms recorded through 60 brain electrodes. The amplitude of
each time series was averaged, separately into 8-15 Hz (alpha),
15-32 Hz (beta) and 32-80 Hz (gamma) frequency bands.

Thus the dataset consisted of 12 × 108 = 1296 points in a
60-dimensional space for each participant.



Motivational States

Point clouds corresponding to participants 1 and 8 in the γ band
after applying principal component analysis (PCA) for reduction
to dimension 3. The two clusters correspond to two sessions
performed in each block. Blue: Solo; Red: Easy; Green: Hard.



Total Persistence

Distribution of total persistence Σi(di − bi) in dimension 0 of
participant 1 (left) and participant 8 (right) of the point clouds
corresponding to three different motivational states: M0 blue
(playing solo); M1 red (playing against a weak opponent); M2
green (playing against a strong opponent).



Comparing Motivational States

The underlying assumption is that point clouds sampled from
different classes exhibit recognizably different shapes.

The plausibility of this claim in our study was tested by means of
bootstrapping on each motivational state by repeatedly sampling
75% of each data cloud randomly with replacement 80 times.

The statistical null hypothesis that the distributions were pairwise
equal was rejected for all participants by means of a
Kolmogorov–Smirnov test with p-values below 0.0001.



Persistence Landscapes

Landscapes yield a convenient vectorization of a persistence
diagram as a sequence of piecewise linear functions with
compact support:



Persistence Silhouettes

A silhouette of a persistence diagram with m points (bi ,di) is a
weighted average of landscape tent functions

ϕ(t) =
∑m

i=1 wi Λ(bi ,di )(t)∑m
i=1 wi

where {wi} are weights to be chosen, and

Λ(b,d)(t) = max{0,min{t − b,d − t}}.

A frequent choice is wi = (di − bi)
p where p is optional:

▶ Choosing p small enhances low-persistence features.
▶ Choosing p large enhances highly persistent features.



Persistence Silhouettes

Silhouettes from persistence diagrams in dimension zero for
each motivational state (M0: blue, M1: red, M2: green) for each
frequency band (α, β, γ) plus the unfiltered dataset.



TDA Classifier

1. The training set was split into classes according to labels.

2. For each class label c in the training set, we calculated a
persistence silhouette Sc in homological dimension zero with
lifetimes as weights.

3. To classify an input x from the testing set, we added x to the
cloud of training datapoints Xc of each class label c. Then,
we recomputed the persistence silhouettes Sc,x for the
datasets Xc ∪ {x}, and finally calculated the Euclidean
distance between the new silhouettes and the former ones.

4. We assigned the class label c(x) = c∗ where c∗ attained the
smallest distance between silhouettes.



Results

Accuracies of the topological classifier by frequency band
without dimensionality reduction for participants 1 and 3.

Violin plots encode median, interquartile range, and a
kernel-smoothed probability density.



Accuracy Variation

Comparison of variation of accuracy (red) with explained
variance (blue) for participants 1 (left) and 8 (right) in a range of
PCA dimensions. The blue dotted line indicates 95% of
explained variance and the red dotted line is chance level.



Persistence Entropy

The above results indicate that our TDA classifier attains a
maximum accuracy when the original dataset is reduced into a
4-dimensional ambient space by means of PCA.

In order to test this observation further, we designed a second
study in which persistence descriptors of the original point cloud
were compared with the same descriptors of PCA projections in
a range of dimensions from 12 to 2.

For this purpose, persistence entropy was used:

PE(D) = −
∑

(bi ,di )∈D

(
di − bi

TP

)
log2

(
di − bi

TP

)
,

where TP =
∑

i (di − bi) denotes total persistence.



Dimensionality Estimates

Comparison of persistence entropy of the study dataset in
ambient dimension 12 (red line) with persistence entropy of
PCA-reduced point clouds in dimensions from 12 to 2 for two
participants.



Conclusions

▶ Although the original data were recorded in dimension 60,
our TDA classifier achieved maximum accuracy when PCA
was applied to data onto dimension approximately 4.

▶ Persistence entropy of PCA-reduced point clouds was
most similar to the original point cloud around dimension
approximately 4.

▶ Experimental evidence from previous neuroscience studies
suggests that the number of brain sources controling EEG
signals for motivational states could be comprised between
4 and 6.


