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Introducción y resultados obtenidos

Extraer y describir propiedades geométricas y topológicas de ciertos espacios métricos es, en
muchas ocasiones, una tarea difı́cil y costosa. Por ello, usar técnicas que impliquen no en-
frentarse directamente con estos objetos suele ser una estrategia inteligente. Una de las más
usadas consiste en el encaje de estos espacios dentro de otros llamados espacios ambiente. A
través de esta inclusión, no solo podemos llegar a concluir resultados sobre el espacio inicial
sino, también, sobre el espacio ambiente.

Una de las caracterı́sticas que más se intenta preservar a través de estos encajes es la de la
distancia, es decir, se busca que esta se conserve dentro del nuevo espacio. Formalmente, se
intenta trabajar con encajes isométricos: la función distancia del espacio ambiente restringida a
la imagen del encaje de nuestro espacio inicial tiene que coincidir con la función distancia del
espacio métrico original.

Son muchos los resultados en torno a este tipo de encajes y algunos han alcanzado bastante
fama debido a su relevancia. Un buen ejemplo es el encaje de variedades suaves de Nash [72].
El estadounidense probó que toda variedad riemanniana suave puede ser encajada de modo
isométrico dentro de un espacio euclı́deo de dimensión suficientemente alta. Otro ejemplo con
más de cien años e igualmente importante, fue el resultado dado por Hilbert [45] donde probaba
que no habı́a ninguna copia isométrica completa del espacio hiperbólico dentro de R3. Sin duda
se podrı́a proveer una lista interminable con resultados clave para distintas áreas donde este tipo
de encajes juegan un papel fundamental y no harı́a más que mostrar la importancia que tiene
obtener resultados relacionados con ellos.

En esta tesis doctoral vamos a estudiar dos encajes isométricos en particular: el encaje de
Kuratowski y el encaje canónico dentro de espacios de tipo Wasserstein.

El encaje isométrico de Kuratowski ϕ es el encaje natural de un espacio métrico compacto
X dentro del espacio L∞(X), donde

L∞(X) =

{
f : X → R : ||f ||∞ = sup

x∈X
|f(x)| <∞

}
,

producido por la siguiente aplicación

ϕ : X → L∞(X)

x 7→ distx(·) := distX(x, ·).

Cuando X es una variedad riemanniana (Mn, g) cerrada –compacta y sin frontera–, este encaje
se usa para calcular el Filling Radius, invariante definido por Gromov en [39]. Fred Wihelm
propone en [93] entender intuitivamente el Filling Radius del siguiente modo: podemos con-
siderar que una variedad riemanniana (Mn, g) orientable y cerrada acota un agujero (n + 1)–
dimensional; entonces el Filling Radius medirı́a el tamaño de dicho agujero.
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Aunque la definición de Filling Radius es bastante natural y pareciera que esconde bastante
información sobre nuestros espacios, solo se conocen unos pocos valores exactos de este invari-
ante (ver Sección 2.1, además de las referencias [53, 54, 55]). Por este motivo, contribuciones
en torno a calcular valores o aportar desigualdades de cara a acotar el valor del Filling Radius
son de relativa importancia.

En esta tesis presentamos cotas tanto inferiores como superiores al Filling Radius. En
primer lugar, probamos en [31] que el Filling Radius de una variedad cerrada siempre es pos-
itivo. Este resultado ya habı́a aparecido con anterioridad [37], pero presentamos una nueva
prueba:

Teorema 2.6. Sea M una variedad riemanniana cerrada con radio de inyectividad injM y
curvatura seccional sec ≤ K, donde K ≥ 0. Entonces

FillRad(M) ≥ 1

4
min

{
injM ,

π√
K

}
, (1)

donde π/
√
K se considera ∞ cuando K = 0.

Gracias a este resultado obtenemos la cota deseada:

Corolario 2.6.1. Sea (M, g) una variedad riemanniana cerrada, entonces

FillRad(M) ≥ c0 > 0.

La cota superior que obtenemos para el Filling Radius de una variedad cerrada M necesita
de una submersión riemanniana –para más información sobre este tipo de aplicaciones, ver la
Sección 1.4– entre M y otra variedad B:

Teorema 2.7. Sea π : M → B una submersión riemanniana donde dimM > dimB. En-
tonces

FillRad(M) ≤ 1

2
max
b∈B

{diamπ−1(b)}, (2)

donde el diámetro de cada fibra es tomado respecto a la métrica extrı́nseca.

Una vez obtenido este resultado, hay varios corolarios cambiando un poco el tipo de apli-
cación entre espacios. En primer lugar, si relajamos un poco la restricción de que los espacios
sean variedades riemannianas, podemos usar submetrı́as (una generalización métrica del con-
cepto de submersiones riemannianas).

Corolario 2.7.2. Sea (X, d̂istX) una variedad métrica (i.e, una variedad cerrada con una
distancia definida), (Y, distY ) un espacio métrico y π : X → Y una submetrı́a entre ellos.
Entonces

FillRad(X) ≤ 1

2
max
y∈Y

{diamπ−1(y)}.

También, en los Corolarios 2.7.1 y 2.7.3 se puede encontrar el mismo resultado pero con
productos alabeados y foliaciones riemannianas singulares.

La definición de Filling Radius involucra la clase fundamental en homologı́a de una var-
iedad riemanniana. Siguiendo esa noción en grupos de homologı́a de dimensiones menores, se
puede replicar la definición de Filling Radius dando lugar a los k–Filling Radius intermedios.
Ningún valor exacto se conoce de estos invariantes. En este sentido, todo lo que se ha apor-
tado hasta la fecha son cotas. Tomando dos variedades cerradas y suponiendo una aplicación
Lipschitz entre ellas, en [31] obtuvimos el siguiente resultado:
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Teorema 2.9. Sea f : Mm → Nn una aplicación Lipschitz entre variedades cerradas, tal que
la función inducida fk,∗ : Hk(M) → Hk(N) sea sobreyectiva. Entonces

FillRadk(M) ≥ C−1 FillRadk(N).

El reach de un subconjunto A ⊂ X –definido por Federer en [32]– mide, localmente,
el máximo radio de la bola centrada en ese punto cuyos puntos tienen una única proyección
métrica en A. Es decir, de un modo informal, si encajamos un espacio dentro de otro ambiente,
el reach mide cuán arrugada o estirada queda la imagen de dicho encaje. En la Sección 1.6
hemos proporcionado una recopilación de referencias bibliográficas con suficientes resultados
relevantes involucrando el reach para aquel lector interesado en la materia.

Para terminar con el estudio del encaje de Kuratowski, en [31] calculamos el valor de su
reach:

Teorema 3.1. Sea Mn una variedad riemanniana compacta. Entonces, para todo p ∈ M se
tiene que

reach(p,M ⊂ L∞(M)) = 0.

El segundo encaje isométrico que estudiamos a lo largo de la tesis es el que se produce
de modo natural entre espacios métricos y espacios de tipo Wasserstein. En particular, tres de
ellos: el usual –conocido como p–espacio de Wasserstein–, el Orlicz–Wassertein y el espacio de
diagramas de persistencia. Las definiciones, introducción y motivación para el uso de ese tipo
de espacios se pueden encontrar en la Sección 1.5. Todos los resultados obtenidos involucrando
el reach y espacios de tipo Wasserstein fueron realizados junto a Javier Casado y Jaime Santos–
Rodrı́guez y pueden ser encontrados en [24].

En lo relativo al p–espacio de Wassertein –el espacio de medidas de probabilidad con
soporte el espacio métrico y p–momento finito–, primero demostramos cómo todo espacio
métrico geodésico tiene reach nulo en el 1–espacio de Wassertein:

Teorema 3.2. Sea (X, dist) un espacio métrico geodésico y W1(X) su 1–espacio de Wasser-
stein. Entonces, para cada punto de acumulación x ∈ X , tenemos que reach(x,X ⊂ W1(X)) =
0. Concretamente, si X no es un espacio discreto, se cumple que reach(X ⊂ W1(X)) = 0.

Al permitir p > 1, el escenario se vuelve más complejo, ya que no podemos replicar el
resultado anterior con los mismos argumentos. En [24] probamos que reach(X ⊂ Wp(X)) = 0
estaba relacionado con la existencia de más de una geodésica minimal entre dos puntos. La
siguiente proposición es la clave para ello:

Proposición 3.2. Sea (X, dist) un espacio métrico geodésico y x, y ∈ X dos puntos con x ̸= y.
Consideremos la medida de probabilidad µ = λδx + (1 − λ)δy, con 0 < λ < 1. Entonces µ
minimiza su p–distancia de Wasserstein con respecto a X exactamente en un punto por cada
geodésica minimal que exista entre x e y.

Usando la Proposición 3.2 como herramienta fundamental, obtuvimos el siguiente teorema
para p–espacios de Wasserstein con p > 1:

Teorema 3.3. Sea (X, dist) un espacio métrico geodésico y x ∈ X un punto tal que existe
otro y ∈ X con la propiedad de que existen al menos dos geodésicas minimales distintas entre
ellos. Entonces, para todo p > 1 se cumple que

reach(x,X ⊂ Wp(X)) = 0.
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En particular, si existe un x ∈ X que satisface esa propiedad, reach(X ⊂ Wp(X)) = 0 para
todo p > 1.

A raı́z de este teorema surgieron los Corolarios 3.3.1, 3.3.2 y 3.3.3 que prueban que el
reach(X ⊂ Wp(X)) = 0 para variedades compactas, no simplemente conexas y espacios
métricos propios geodésicos.

De un modo natural, la siguiente pregunta que intentamos responder fue la de la positividad
del reach en los p–espacios de Wassertein. Fue respondida parcialmente gracias al siguiente
teorema:

Teorema 3.5. Sea (X, dist) un espacio métrico reflexivo. Las siguientes afirmaciones son
ciertas:

1. SiX es estrictamente p–convexo para p ∈ [1,∞) o uniformemente ∞–convexo si p = ∞,
entonces

reach(X ⊂ Wr(X)) = ∞, para r > 1. (3)

2. Si X es Busemann, estrictamente p–convexo para algún p ∈ [1,∞] y uniformemente
q–convexo para algún q ∈ [1,∞], entonces

reach(X ⊂ Wr(X)) = ∞, para r > 1. (4)

Al igual que en el caso nulo, este último teorema se puede aplicar a espacios conocidos,
como los CAT (0) (Corolario 3.5.1).

El estudio del reach, como explicamos a lo largo de esta tesis, está intimamente relacionado
con la existencia de entornos tubulares en los cuales todo punto tenga una proyección métrica
única sobre el subconjunto al que se le pretende calcular el reach. Siempre que exista un
ϵ > 0 tal que reach(x,X ⊂ Wp(X)) ≥ ϵ para todo x ∈ X , podemos definir la función
projp : Wp(X) → X en el ϵ–entorno de X ⊂ Wp(X), que envı́e cada medida µ a su p–
baricentro –término usado en la literatura para referirse a la proyección métrica en terminos
de distancia. En el caso de p = 2 pudimos probar el siguiente resultado que trata sobre la
regularidad de la función proj2 e involucra a espacios cuyo reach es infinito, por tanto, tiene la
función proj2 definida en todo W2(X):

Teorema 3.6. Sea (X, ∥ · ∥) un espacio de Banach reflexivo con una norma estrictamente
convexa y que satisface la propiedad B [57, Sección 4.3]. Entonces proj2 : W2(X) → X es
una submetrı́a.

Los espacios de Orlicz–Wasserstein fueron definidos por Sturm en [82] de cara a establecer
un contexto más general a los ya existentes p–espacios de Wasserstein. Estos espacios involu-
cran dos funciones –una convexa φ y una cóncava ψ– en su construcción que, si son elegidas de
un modo particular, hace que el espacio Orlicz–Wasserstein obtenido coincida con el clásico p–
Wasserstein. Debido a ello, en [24], hicimos el mismo estudio del reach que con los canónicos,
ya que también se pueden conseguir encajes isométricos de espacios metricos dentro de ellos.

Empezamos analizando cuándo el reach se anulaba y obtuvimos una proposición similar a
la Proposición 3.2:

Proposición 3.3. Sea X un espacio métrico geodésico y x, y ∈ X tal que x ̸= y. Definimos
la siguiente medida de probabilidad µ = λδx + (1 − λ)δy, para 0 < λ < 1. Entonces, las
siguientes afirmaciones se cumplen:
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1. µ minimiza su ϑ–distancia de Wasserstein a X en una geodésica minimal entre x e y.

2. Si λ está cerca de uno y existe una constante c > 1 tal que φ−1(t) < t para todo t > c,
entonces el mı́nimo se alcanzará en el interior de cada geodésica minimal.

Por tanto, siguiendo la misma estructura que en el caso anterior, también somos capaces de
obtener un teorema relacionando la existencia de más de una geodésica minimal con la nulidad
del reach:

Teorema 3.7. Sea X un espacio métrico geodésico y x ∈ X un punto tal que cumple lo sigu-
iente: existe al menos un punto y ∈ X tal que está unido a x por al menos dos geodésicas
minimales. Supongamos que X está isométricamente encajado en un espacio de Orlicz–
Wasserstein Wϑ(X). Entonces, para cada φ tal que φ(t0) ̸= t0 para algún t0 > 1 se tiene
que

reach(x,X ⊂ Wϑ(X)) = 0.

En particular, si existe un x ∈ X con la anterior propiedad citada, reach(X ⊂ Wϑ(X)) = 0
para cada p > 1. Además, en variedades compactas y no simplemente conexas,

reach(x,X ⊂ Wϑ(X)) = 0

para todo x ∈ X .

Del mismo modo que con los espacios de Wassertein canónicos, también obtuvimos re-
sultados en relación a la positividad del reach para encajes isométricos dentro de los Orlicz–
Wasserstein:

Teorema 3.8. Sea (X, dist) un espacio CAT (0) reflexivo. Supongamos que φ es convexa y
puede ser escrita como φ(r) = ψ(rp), donde ψ es otra función convexa y p > 1. Entonces

reach(X ⊂ Wϑ(X)) = ∞, (5)

donde ψ ≡ Id y φ(1) = 1.

El último espacio de tipo Wasserstein que decidimos estudiar fue el espacio de diagramas
de persistencia equipado con una distancia ∞–Wasserstein conocida como la distancia de Bot-
tleneck. Los diagramas de persistencia son la clave del Análisis de Datos Topológico –conocido
por TDA debido a sus iniciales en inglés– ya que capturan toda la información sobre el resultado
del análisis aplicado a una nube de puntos particular. En [18], Bubenik y Wagner construyen
de modo explı́cito un encaje isométrico para espacios métricos separados y acotados dentro
del espacio de diagramas de persistencia. Debido a su importancia en la actualidad, decidimos
estudiar este espacio y, en particular, el reach de este tipo de encajes:

Teorema 3.9. Sea (X, dist) un espacio métrico separado y acotado y (Dgm∞, w∞) el espacio
de diagramas de persistencia dotado con la distancia de bottleneck. Si x ∈ X es un punto de
acumulación, entonces

reach(x,X ⊂ Dgm∞) = 0.

En particular, si X no es discreto, reach(X ⊂ Dgm∞) = 0.
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Desde finales del siglo XX, tanto el transporte óptimo como las técnicas derivadas de los
espacios de tipo Wasserstein [80, 92] han ido creando nuevas vı́as para resolver problemas
clásicos. Un buen ejemplo es el que se desarrolla en el Capı́tulo 4 de la presente tesis, el
cual estudia el Problema de las cafeterı́as con una nueva variación. Su enunciado original
pregunta lo siguiente: cómo colocar N establecimientos de forma óptima en una cierta región
X . Este problema se deriva de una amplia tradición de problemas de localización y transporte
que, a través de varias enunciaciones, intentan aproximar puntos en un espacio a la distribución
uniforme en la misma. En este caso en particular, además, en [23] introducimos nueva hipótesis
a este famoso problema de colocación de establecimientos: competencia.

Steinerberger y Brown [15, 16, 81] decidieron trabajar este problema bajo la óptica del
transporte óptimo y usar el encaje isométrico de la región en cuestión dentro de su 2–espacio
de Wasserstein con el fin de poder usar la distancia allı́ definida y acotar la distancia entre
las cafeterı́as –representada como una suma de deltas de dirac normalizadas– y la medida de
Lebesgue de la región con masa 1, debido a que estamos trabajando con medidas de probabili-
dad.

En [23], decidimos seguir con con ese mismo planteamiento pero añadiendo la competencia
como una resta de deltas de Dirac a la medida inicial formada por nuestros comercios –en la
Sección 4.4 se puede encontrar una discusión sobre el por qué de la elección de la nueva medida.
A la hora de estudiar la casuı́stica que producı́a esta nueva configuración decidimos dividir los
resultados en dos grandes familias: la competencia es entre un número fijo de establecimientos
o, bien, tiene un comportamiento dinámico.

El resultado principal en el caso de que la competencia esté fija, nos permite comprobar
que, si ellos no modifican el número de establecimientos y nosotros vamos creciendo, nuestra
colocación terminará ganando a la suya cualesquiera que sea esta:

Teorema 4.5. SeaX una variedad d–dimensional suave, compacta y sin frontera donde g ≥ 3,
G : X × X → R ∪ {∞} la función de Green del laplaciano normalizada con media 0 sobre
la variedad y N1, N2 > 0. Entonces, para cada conjunto de puntos distintos {x1, . . . , xN1} y
{y1, . . . , yN2} se tiene que

W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
, dx

)
≲X,N2

1

(N1 +N2)1/d
+

1

N1 +N2

∣∣∣∣∣∑
k ̸=ℓ

G(zk, zℓ)

∣∣∣∣∣
1/2

,

donde W1,1
1 denota la distancia de Wasserstein con signo definida en [67] y en la Sección 1.5.1,

zi = xi de i = 1 a N1 y zi = yi−N1 de i = N1 + 1 a N1 +N2.

En la parte derecha de la desigualdad del anterior teorema aparece como sumando la función
de Green –explicada con detalle en la Sección 4.2. Al igual que en los artı́culos de Steinerberger
y Brown, si las cafeterı́as de nuestra propiedad son colocadas convenientemente, el sumando
desaparece de la desigualdad:

Teorema 4.6. Sea zn una sucesión construida como en (4.5) sobre una variedad d–dimensional
compacta con d ≥ 3 y {x1, . . . , xN1} ⊂ {zi}N1+N2

i=1 y {y1, . . . , yN2} ⊂ {zi}N1+N2
i=1 tal que

xi ̸= yj para todos i, j. Entonces

W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
, dx

)
≲X,N2

1

(N1 +N2)1/d
.
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A la hora de trabajar con el caso dinámico, en primer lugar, a través de la Proposición 4.2
y el Corolario 4.2.1 probamos que, a través del establecimiento de zonas de medida positiva
donde no se nos permite abrir comercios pero el rival sı́ puede, la competencia siempre ganarı́a.

Finalmente, quitando la restricción de las zonas prohibidas, probamos los dos últimos teo-
remas del capı́tulo para diferentes tipos de crecimiento de la competencia:

Teorema 4.7. Sea µN =
(∑N

i=1 δxi
−
∑f(N)

j=1 δyj

)
. Si f(N) ≥ f(N−1)+2, entonces, paraN0

suficientemente grande, los establecimientos de la competencia ganarán para todo N ≥ N0,
es decir,

W1,1
1

(
1

N + f(N)
µN , dx

)
>W1,1

1

(
1

N + f(N)
(−µN), dx

)
. (6)

Theorem 4.8. Sea µN =
(∑N

i=1 δxi
−
∑N+K

j=1 δyj

)
, y N0 > 0. Entonces, existen valores de K

tal que la competencia tendrá una estrategia ganadora para todo N ≤ N0, es decir,

W1,1
1

(
1

2N +K
µN , dx

)
>W1,1

1

(
1

2N +K
(−µN), dx

)
. (7)

La tesis está organizada del siguiente modo:
El Capı́tulo 1 está dedicado a asentar las bases y preliminares necesarios para la com-

prensión del trabajo: comenzamos recordando la definición de un espacio métrico geodésico
junto con el concepto de curvatura en el marco de espacios métricos (Secciones 1.1 y 1.2).
Dedicamos la Sección 1.3 a definiciones sobre ciertos tipos de convexidad aplicados a la
función distancia. Estos serán usados posteriormente para probar algunos teoremas del Capı́tulo
3. En la Sección 1.4 recordamos las definiciones de submersión riemanniana y submetrı́as –
una generalización de la submersión en el caso de espacios métricos en vez de variedades– ası́
como algunos resultados relevantes de este último tipo de funciones. Como final del capı́tulo,
en la Sección 1.5 introducimos el problema del transporte óptimo como paso previo a presentar
los espacios de Wasserstein con los que vamos a trabajar a lo largo de la tesis y en la Sección
1.6 definimos el reach –en el sentido de Federer– a la vez que aportamos algunos resultados
relevantes para dar contexto histórico.

El Capı́tulo 2 está dedicado al encaje isométrico de una variedad cerrada M en su espa-
cio L∞(M) y el invariante Filling Radius definido por Gromov en [39]. En la Sección 2.3
probamos en detalle la positividad del Filling Radius. En las Secciones 2.4 y 2.5 presenta-
mos las cotas superiores para el Filling Radius en presencia de submersiones riemannianas y
submetrı́as, además de para productos alabeados y foliaciones riemannianas singulares. Y, por
último, en la Sección 2.6 replicamos algunos resultados para el Filling Radius intermedio ası́
como una cota en presencia de aplicaciones Lipschitz entre variedades.

El Capı́tulo 3 lo dedicamos a todos los resultados que involucran el reach. En primer lugar,
en la Sección 3.1 calcularemos el reach del encaje de Kuratowski. En el resto de Secciones 3.2,
3.3 y 3.4, se calcularán los reach para los espacios de tipo Wasserstein que se presentan en los
preliminares.

Para terminar, en el Capı́tulo 4 abordaremos el problema de las cafeterı́as con competición
–el cual explicaremos en detalle en la Sección 4.1– dividiéndolo en dos casos: el primero en la
Sección 4.2 cuando la competencia es fija y el segundo en la Sección 4.3 cuando la competencia
es dinámica. Finalmente, en la Sección 4.4, presentaremos una pequeña discusión sobre la
elección de la medida de probabilidad usada durante el estudio del problema.
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Introduction and statement of results

Extracting and describing geometric and topological properties of certain metric spaces is often
a challenging and costly task. Therefore, employing techniques that do not directly engage with
these objects is often a wise strategy. One of the most commonly used approaches involves
embedding these spaces into other spaces known as ambient spaces. Through this embedding,
we can not only draw conclusions about the initial space but also about the ambient one.

One of the key characteristics that is often sought to be preserved through these embeddings
is distance; in other words, the aim is to maintain distance within the new space. Formally, the
goal is to work with isometric embeddings: the distance function of the ambient space restricted
to the image of the embedding of our initial space must coincide with the distance function of
the original metric space.

There are numerous results concerning such embeddings, and some have gained consid-
erable success due to their significance. A prime example is the embedding of smooth Rie-
mannian manifolds by Nash [72]. He proved that every smooth Riemannian manifold can
be isometrically embedded into a sufficiently high-dimensional Euclidean space. Another ex-
ample, equally important and dating back over a century, is the result established by Hilbert
[45], where he stated that there is no complete isometric copy of hyperbolic space within R3.
Undoubtedly, one could provide an endless list of key results in various fields where such em-
beddings play a fundamental role, highlighting the importance of obtaining results related to
them.

In this dissertation, we will study two specific isometric embeddings: the Kuratowski em-
bedding and the canonical embedding into Wasserstein-type spaces.

The Kuratowski isometric embedding ϕ is the natural embedding of a compact metric space
X into L∞(X), where

L∞(X) =

{
f : X → R : ||f ||∞ = sup

x∈X
|f(x)| <∞

}
,

defined by the following map

ϕ : X → L∞(X)

x 7→ distx(·) := distX(x, ·).

When X is a closed (compact and without boundary) Riemannian manifold (Mn, g), this em-
bedding is used to calculate the Filling Radius, an invariant defined by Gromov in [39]. Fred
Wilhelm proposes in [93] an intuitive understanding of the Filling Radius as follows: we can
consider that a closed orientable Riemannian manifold (Mn, g) bounds a (n+ 1)–dimensional
hole; then the Filling Radius measures the size of this hole.

xiii



Although the definition of the Filling Radius is quite natural and seems to contain valuable
information about our spaces, only a few exact values of this invariant are known (see Section
2.1, as well as references [53, 54, 55]). For this reason, contributions related to calculating
values or providing inequalities to bound the Filling Radius are of relative importance.

In this thesis, we present both lower and upper bounds on the Filling Radius. Firstly, we
prove in [31] that the Filling Radius of a closed manifold is always positive. This result had
already appeared in some works, but we present here a new proof:

Theorem 2.6. Let M be a closed Riemannian manifold with injectivity radius injM and with
sectional curvature sec ≤ K, where K ≥ 0. Then

FillRad(M) ≥ 1

4
min

{
injM ,

π√
K

}
, (8)

where π/
√
K is understood as ∞ whenever K = 0.

With this result we obtain the desired bound:

Corollary 2.6.1. Let (M, g) be a closed Riemannian manifold, then

FillRad(M) ≥ co > 0.

The upper bound we obtain for the Filling Radius of a closed manifold M requires a Rie-
mannian submersion (for more information on this type of function, see Section 1.4) between
M and another manifold B known as base:

Theorem 2.7. Let π :M → B be a Riemannian submersion with dimM > dimB. Then

FillRad(M) ≤ 1

2
max
b∈B

{diamπ−1(b)}, (9)

where the diameter of each fiber is considered in the extrinsic metric.

Once this result is established, there are several corollaries that arise when slightly mod-
ifying the type of function between spaces. Firstly, if we relax the restriction that the spaces
are Riemannian manifolds, we can use submetries (a metric generalization of the concept of
Riemannian submersions).

Corollary 2.7.2. Let (X, d̂istX) be a metric manifold (i.e, a closed manifold with a distance),
(Y, distY ) a metric space and π : X → Y a submetry between them. Thus

FillRad(X) ≤ 1

2
max
y∈Y

{diamπ−1(y)}.

Also, in Corollaries 2.7.1 and 2.7.3, the same result can be found, but with warped products
and singular Riemannian foliations.

The definition of the Filling Radius involves the fundamental class in the n–homology
group of a Riemannian manifold. Following a similar notion in lower-dimensional homology
groups, we can define the intermediate k-Filling Radius. No exact values are known for these
invariants. In this regard, all that has been contributed to date are bounds. Considering two
closed manifolds and assuming a Lipschitz map between them, in [31] we obtained the follow-
ing result:
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Theorem 2.9. Let f : Mm → Nn be a Lipschitz map between closed manifolds such that the
induced map fk,∗ : Hk(M) → Hk(N) is onto. Then

FillRadk(M) ≥ C−1 FillRadk(N).

The reach of a subset A ⊂ X (defined by Federer in [32]) measures, locally, the maximum
radius of a ball centered at a point in which its points have a unique metric projection ontoA. In
other words, in an informal sense, if we embed one space in an ambient one, the reach measures
how wrinkled or stretched the image of this embedding becomes. In Section 1.6, we have
provided a compilation of bibliographic references with sufficient relevant results involving the
reach for readers interested in the subject.

To conclude the study of the Kuratowski embedding, in [31], we calculate the reach of that
embedding:

Theorem 3.1. Let Mn be a compact Riemannian manifold. For every p ∈M ,

reach(p,M ⊂ L∞(M)) = 0.

The other isometric embedding that we study throughout this thesis naturally occurs be-
tween metric spaces and Wasserstein-type spaces, specifically three of them: the standard one,
known as the p-Wasserstein space, the Orlicz–Wasserstein space, and the space of persistence
diagrams. Definitions, introductions, and motivations for the use of these types of spaces can
be found in Section 1.5. All the results obtained concerning the reach and Wasserstein-type
spaces were produced in collaboration with Javier Casado and Jaime Santos-Rodrı́guez and
can be found in [24].

Regarding the p–Wasserstein space, which is the space of probability measures supported
on the metric space with finite p–moments, we first proved how every geodesic metric space
has zero reach in the 1-Wasserstein space:

Theorem 3.2. Let (X, dist) be a geodesic metric space, and consider its 1–Wasserstein space,
W1(X). Then, for every accumulation point x ∈ X , reach(x,X ⊂ W1(X)) = 0. In particular,
if X is not discrete, reach(X ⊂ W1(X)) = 0.

When allowing p > 1, the scenario becomes more complex, as we cannot replicate the
previous result with the same arguments. In [24], we demonstrated that reach(X ⊂ Wp(X)) =
0 was related to the existence of more than one minimal geodesic between two points. The
following proposition is the key to this:

Proposition 3.2. Let (X, dist) be a geodesic metric space, and x, y ∈ X two points with x ̸= y.
Consider the probability measure µ = λδx + (1 − λ)δy, for 0 < λ < 1. Then µ minimizes its
p–Wasserstein distance to X exactly once for every minimizing geodesic between x and y.

Using Proposition 3.2 as a fundamental tool, we obtained the following theorem for p-
Wasserstein spaces with p > 1:

Theorem 3.3. Let X be a geodesic metric space, and x ∈ X a point such that there exists
another y ∈ X with the property that there exist at least two different minimizing geodesics
from x to y. Then, for every p > 1,

reach(x,X ⊂ Wp(X)) = 0.

In particular, if there exists a point x ∈ X satisfying that property, reach(X ⊂ Wp(X)) = 0
for every p > 1.
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As a result of this theorem, the following Corollaries 3.3.1, 3.3.2, and 3.3.3 emerged, which
prove that reach(X ⊂ Wp(X)) = 0 for compact manifolds, non-simply connected spaces, and
proper geodesic metric spaces.

Naturally, the next question we attempted to answer was the positivity of reach in p-
Wasserstein spaces. Partially, it was addressed with the following theorem:

Theorem 3.5. Let (X, dist) be a reflexive metric space. Then the following assertions hold:

1. If X is strictly p–convex for p ∈ [1,∞) or uniformly ∞–convex if p = ∞, then

reach(X ⊂ Wr(X)) = ∞, for r > 1. (10)

2. If X is Busemann, strictly p–convex for some p ∈ [1,∞] and uniformly q–convex for
some q ∈ [1,∞], then

reach(X ⊂ Wr(X)) = ∞, for r > 1. (11)

Just like in the null case, this last theorem can be applied to spaces known as CAT(0) spaces
(Corollary 3.5.1).

The study of reach, as we have explained throughout this thesis, is intimately related to the
existence of tubular neighborhoods in which every point has a unique metric projection onto
the subset for which we intend to calculate the reach. Whenever there exists an ϵ > 0 such that
reach(x,X ⊂ Wp(X)) ≥ ϵ for all x ∈ X , we can define the function projp : Wp(X) → X
within the ϵ-neighborhood of X ⊂ Wp(X), which maps each measure µ to its p-barycenter
(a term used in the literature to refer to metric projection in terms of distance). In the case of
p = 2, we were able to prove the following result concerning the regularity of the function
proj2, which involves spaces with infinite reach and, therefore, has the function proj2 defined
throughout W2(X):

Theorem 3.6. Let (X, ∥ · ∥) be a reflexive Banach space equipped with a strictly convex norm
and satisfying property B. Then proj2 is a submetry.

Orlicz–Wasserstein spaces were defined by Sturm in [82] with the aim of establishing a
more general framework within the already existing p–Wasserstein spaces. These spaces in-
volve two functions (one convex φ and one concave ψ) in their construction, which, if chosen
in a particular way, makes the resulting Orlicz–Wasserstein space coincide with the classical
p–Wasserstein space. Because of this, in [24], we conducted the same study of the reach as
with the canonical ones, as it is also possible to achieve isometric embeddings of metric spaces
into them.

We began by analyzing when the reach became zero and obtained a proposition similar to
Proposition 3.2:

Proposition 3.3. Let X be a geodesic metric space, and let x, y ∈ X be two points with x ̸= y.
Consider the probability measure µ = λδx + (1 − λ)δy, for 0 < λ < 1. Then, the following
assertions hold:

1. µ can only minimize its ϑ–Wasserstein distance to X inside a minimizing geodesic be-
tween x and y.
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2. If λ is close to one, and there exists a constant c > 1 such that φ−1(t) < t for every t > c,
then the minimum will be attained inside the interior of each geodesic.

Therefore, following the same structure as in the previous case, we are also able to obtain a
theorem relating the existence of more than one minimal geodesic to the nullity of the reach:

Theorem 3.7. Let X be a geodesic metric space, and x ∈ X a point such that there exists
another y ∈ X with the property that there exists at least two different minimizing geodesics
from x to y. Suppose X is isometrically embedded into an Orlicz-Wasserstein space Wϑ(X).
Then, for every φ such that φ(t0) ̸= t0 for some t0 > 1,

reach(x,X ⊂ Wϑ(X)) = 0.

In particular, if there exists a point x ∈ X satisfying that property, reach(X ⊂ Wϑ(X)) = 0
for every p > 1. Also, in compact manifolds and non-simply connected manifolds,

reach(x,X ⊂ Wϑ(X)) = 0

for every x ∈ X .

Just like with the canonical Wasserstein spaces, we also obtained results regarding the pos-
itivity of reach for isometric embeddings within Orlicz-Wasserstein spaces:

Theorem 3.8. Let (X, dist) be a reflexive CAT(0)–space. Suppose φ is a convex function
which can be expressed as φ(r) = ψ(rp), where ψ is another convex function and p > 1. Then

reach(X ⊂ Wϑ(X)) = ∞, (12)

where ψ ≡ Id and φ(1) = 1.

The last type of Wasserstein space we decided to study was the space of persistence dia-
grams equipped with a ∞–Wasserstein distance, known as the Bottleneck distance. Persistence
diagrams are key to Topological Data Analysis, commonly known as TDA, as they capture
all the information about the result of the analysis applied to a specific point cloud. In [18],
Bubenik and Wagner construct an explicit isometric embedding for separated and bounded
metric spaces into the space of persistence diagrams. Because of its current significance, we
decided to study this space and, in particular, the reach of these types of embeddings:

Theorem 3.9. Let (X, dist) be a separable, bounded metric space and (Dgm∞, w∞) the space
of persistence diagrams with the bottleneck distance. If x ∈ X is an accumulation point, then

reach(x,X ⊂ Dgm∞) = 0.

In particular, if X is not discrete, reach(X ⊂ Dgm∞) = 0.

Since the late 20th century, both optimal transport and techniques derived from Wasserstein-
type spaces [80, 92] have been paving the way for solving classical problems. A good example
of this can be found in Chapter 4 of this thesis, which explores the Coffee Shop Problem with
a new variation. The original statement of this problem asks the following: how to optimally
place N establishments within a certain region X . This problem is derived from a long tradi-
tion of location and transportation problems, which, through various formulations, attempt to
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approximate points in a space to a uniform distribution within the same space. In this particular
case, we also introduce new assumptions to this well-known establishment placement problem:
competition, as detailed in [23].

Steinerberger and Brown [15, 16, 81] decided to approach this problem from the perspective
of optimal transport and use the isometric embedding of the relevant region X into their 2–
Wasserstein space to be able to use the distance defined there and bound the distance between
coffee shops (represented as a sum of normalized Dirac deltas) against the Lebesgue measure
of the region with mass 1, since we are dealing with probability measures.

In [23], we decided to continue with the same approach but added competition as a sub-
traction of Dirac deltas from the initial measure formed by our shops (Section 4.4 provides a
discussion on why we chose the new measure). When studying the scenarios that this new con-
figuration produced, we decided to divide the results into two major categories: competition
being a fixed number of establishments or having dynamic behavior.

The main result in the case where competition is fixed allows us to verify that if they do not
change the number of establishments and we continue to grow, our placement will eventually
outperform theirs, whatever it may be:

Theorem 4.5. Let X be a smooth, compact d–dimensional manifold without boundary, d ≥
3, G : X × X → R ∪ {∞} denote the Green’s function of the Laplacian normalized to
have average value 0 over the manifold and N1, N2 > 0. Then for any distinct sets of points
{x1, . . . , xN1} and {y1, . . . , yN2} we obtain

W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
, dx

)
≲X,N2

1

(N1 +N2)1/d
+

1

N1 +N2

∣∣∣∣∣∑
k ̸=ℓ

G(zk, zℓ)

∣∣∣∣∣
1/2

,

where W1,1
1 is the signed Wasserstein distance defined in [67] and in Section 1.5.1 and zi = xi

from i = 1 to N1 and zi = yi−N1 for i = N1 + 1 to N1 +N2.

On the right-hand side of the inequality in the previous theorem, the Green’s function ap-
pears as an additive term (explained in detail in Section 4.2). Just like in the articles by Steiner-
berger and Brown, if our coffee shops are strategically placed, this term disappears from the
inequality:

Theorem 4.6. Let zn be a sequence obtained in the previous way on a d–dimensional compact
manifold with d ≥ 3 and {x1, . . . , xN1} ⊂ {zi}N1+N2

i=1 and {y1, . . . , yN2} ⊂ {zi}N1+N2
i=1 such

that xi ̸= yj for all i, j. Then

W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
, dx

)
≲X,N2

1

(N1 +N2)1/d
.

When dealing with the dynamic case, first, through Proposition 4.2 and Corollary 4.2.1,
we demonstrated that by establishing regions of positive measure where we are not allowed to
open shops but the competitor can, the competition would always win.

Finally, removing the restriction of forbidden zones, we proved the last two theorems of the
chapter for different types of growth of the competition:
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Theorem 4.7. Let µN =
(∑N

i=1 δxi
−
∑f(N)

j=1 δyj

)
. If f(N) ≥ f(N − 1) + 2, then, for N0 big

enough, the rival shops will win for all N ≥ N0, i.e.

W1,1
1

(
1

N + f(N)
µN , dx

)
>W1,1

1

(
1

N + f(N)
(−µN), dx

)
. (13)

Theorem 4.8. Let µN =
(∑N

i=1 δxi
−
∑N+K

j=1 δyj

)
, and N0 > 0. Then, there exist values of K

such that the rival shops will have a winning strategy for all N ≤ N0, i.e.

W1,1
1

(
1

2N +K
µN , dx

)
>W1,1

1

(
1

2N +K
(−µN), dx

)
. (14)

The thesis is organized as follows:
Chapter 1 is dedicated to laying down the necessary foundations and preliminaries for un-

derstanding the dissertation. We begin by recalling the definition of a geodesic metric space
along with the concept of curvature within the framework of metric spaces (Sections 1.1 and
1.2). To conclude the discussion of basic concepts related to metric spaces, Section 1.3 pro-
vides definitions concerning certain types of convexity applied to the distance function. These
definitions will be used later to prove some theorems in Chapter 3. In Section 1.4, we revisit
the definitions of Riemannian submersion and submetry (a generalization of submersion in the
case of metric spaces instead of manifolds) as well as some relevant results related to the latter
type of functions. Finally, Section 1.5 introduces the problem of optimal transport as a precur-
sor to presenting the Wasserstein spaces that we will work with throughout the thesis and in
Section 1.6, we define reach (in the sense of Federer) while providing some relevant historical
context.

Chapter 2 is dedicated to the isometric embedding of a closed manifold M into its space
L∞(M) and the Filling Radius invariant defined by Gromov in [39]. In Section 2.3, we thor-
oughly prove the positivity of the Filling Radius. In Sections 2.4 and 2.5, we present upper
bounds for the Filling Radius in the presence of Riemannian submersions and submetries, as
well as for warped products and singular Riemannian foliations. Finally, in Section 2.6, we
replicate some results for the Intermediate Filling Radius and provide an upper bound in the
presence of Lipschitz maps between manifolds.

Chapter 3 is devoted to all the results involving reach. First, in Section 3.1, we calculate the
reach of the Kuratowski embedding. In the subsequent sections, 3.2, 3.3, and 3.4, we compute
the reach for the Wasserstein type spaces presented in the preliminaries.

To conclude, in Chapter 4, we address the Coffee Shop Problem with competition, which
we explain in detail in Section 4.1. We divide it into two cases: the first, in Section 4.2, when
competition is fixed, and the second, in Section 4.3, when competition is dynamic. Finally, in
Section 4.4, we provide a brief discussion on the choice of the probability measure used during
the study of the problem.
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Chapter 1

Preliminaries

In this chapter, we will establish the foundational framework required for a precise understand-
ing of isometric embeddings. This will need an initial discussion concerning metric spaces and
the essential constraints imposed upon them, including constraints on distance functions and
the introduction of a curvature concept within metric spaces. Subsequently, we will introduce
two distinct families of mappings applicable to Riemannian manifolds and, in a more general
context, metric spaces. These mappings, Riemannian submersions and submetries, will appear
in key results in subsequent chapters.

Many theorems of the thesis involve the use of Wasserstein distance, Wasserstein spaces
or similar notions, so we spend on these preliminaries a whole section introducing all those
concepts. Finally, we present the reach of a subset and some of the most relevant results
involving it.

1.1 Geodesic measure spaces
We will begin with a complete and separable metric space (X, distX). The first restriction we
will impose concerns the existence of minimizing (in terms of distance) curves between two
points. Formally, the definition is as follows:

Definition 1 (Geodesic metric space). Let (X, distX) be a metric space and x, y ∈ X . A curve
γ : [0, 1] → X will be called a geodesic between x and y if γ(0) = x, γ(1) = y and

distX(γ(t), γ(s)) = |t− s| distX(x, y).

The set of all the geodesics of X will be denoted as Geo(X).

Example 1. An example of geodesic spaces are Riemannian manifolds with the Riemannian
distance.

In spite of the existence of geodesics, these could not be unique between any two points or,
either, we could have a branching phenomena in the space:

Definition 2 (Non-branching space). A geodesic space (X, distX) will be called non-branching
if the map

Geo(X) → X ×X

γ 7→ (γ(0), γ(t))

1



is injective for all t ∈ (0, 1).
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Figure 1.1: A branching metric space

Example 2. Examples of geodesic spaces that are branching are Banach spaces with norms
that are not strictly convex, for example, L∞(M) where M is a closed Riemannian manifold
(Section 2.1).

Example 3. Another famous example of branching metric space is the Hawaiian earrings. It
consists of a family of S1

i := S1
(
1
i

)
, circles of radius 1

i
glued at a certain point p (see Figure

1.2). It is a geodesic metric space but geodesics that pass through p branch.

Figure 1.2: The Hawaiian Earrings

To finish this section, we briefly want to introduce the notion of dimension of a metric
space because it will be used in the thesis. If U is an open cover of X , its order is defined as
the minimum value n such that any p ∈ X is contained in, at most, n members of U .
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Definition 3 (Topological dimension of a metric space). We define the topological dimension
of X , dimX or dimT X , as the minimum value n such that any open cover U of X has an open
refinement with order less or equal than n+ 1.

For example, the topological dimension of a n–Riemannian manifold coincides with n.

Remark. There are other dimensions known for metric spaces, such as the Hausdorff dimen-
sion. The relation between the topological and Hausdorff dimension is the following inequality:

dimT X ≤ dimHX.

1.2 Curvature on geodesic metric spaces
Metric spaces can be endowed with many geometric restrictions, acquiring a lot of regularity
as a consequence. One of them is curvature in term of bounds. As is it said in [19, Introduction
4.1.1]: ”Loosely speaking, curvature bounds guarantee a certain degree of convexity of con-
cavity for distance functions”. In a deeper sense, we will show some convexity considerations
for distance functions in Section 1.3.

We are going to define the curvature by three definitions that are equivalent [19, Section
4.3] . Moreover, we are going to follow [19] for the definitions and structure. It is important
to remark that although we are going to define “a space having nonpositive (resp. nonnegative)
curvature”, we will not define a notion of curvature alone, and neither a numerical value to it.

1.2.1 Comparisons for distance functions
Let (X, distX) be a geodesic space and fix p ∈ X . We can define the real valued function

distp(·) := distX(p, ·).

Furthermore, letting γ : [0, T ] → X be a minimizing geodesic such that γ(0) = a and γ(T ) =
b, then we can introduce the following function

g(t) := distp ◦γ(t) = distp(γ(t)). (1.1)

We will call such functions 1–dimensional distance functions.
In this section we are always going to use the Euclidean space as the “reference” space

due to its flatness. The curvature notion will be established in terms of how much convex or
concave g(t) is in terms of a suitable 1–dimensional Euclidean distance function.

For that purpose, we choose a segment of the same length as T = |ab| = |γ(0)γ(T )| but in
the Euclidean space and a point p̃ ”positioned in the same way as p is positioned with respect
to γ”. Formally speaking, we choose an Euclidean comparison segment from ã to b̃ of length
T = |ãb̃| and p̃ such that

|ãp̃| = distp(a)

|̃bp̃| = distp(b).

For clarity, we will parametrize this segment as γ̃(t) such that γ̃(0) = ã and γ̃(T ) = b̃.

3



Remark. As Burago, Burago and Ivanov pointed out in [19], this comparison configuration is
unique up to a rigid motion.

Definition 4 ([19], Definition 4.1.1). The comparison function for g(t) is

g̃(t) = |p̃γ̃(t)|, (1.2)

the Euclidean distance from p̃ restricted to a comparison segment from ã to b̃.

The convention will be that distance functions for nonpositively (resp. nonnegatively)
curved spaces must be ”more” convex (resp. ”more” concave) than for the Euclidean plane.
We are going to establish that conditions by the inequality g̃(t) ≤ g(t) (resp. g̃(t) ≥ g(t)).

Definition 5 ([19], Definition 4.1.2). We say that (X, distX) is nonpositively (resp. nonnega-
tively) curved if every point inX has a neighbourhood such that, whenever a point p ∈ X and a
geodesic γ lies within this neighbourhood, the comparison function γ̃(t) for the 1–dimensional
distance function g(t) = distp(γ(t)) satisfies g̃(t) ≤ g(t) (resp. g̃(t) ≥ g(t)) for all t ∈ [0, T ].

Example 4 ([19], Example 4.1.3). Glue together three copies of the ray [0,∞) ⊂ R at the point
0. The resulting space R(3) has nonpositive curvature.

There is a proof of this statement in [19, Proof of Example 4.1.3].

Example 5 ([19], Example 4.1.5). Consider R2 with the norm ||u|| = |x| + |y| where x, y are
the Cartesian coordinates of v. (R2, || · ||) is neither nonnegatively nor nonpositively curved.

There is a proof of this statement in [19, Proof of Example 4.1.5].

1.2.2 Distance comparison for triangles
A more visual way to understand the curvature notion of a metric space is the one given by
comparison of triangles. A triangle in X is a collection of three points a, b and c ∈ X (so
called vertices) connected by three minimizing geodesics (called sides). For clarity we will
call this minimizing geodesic with the same notation as [19]: [ab], [bc] and [ca] as well as their
length |ab|, |bc| and |ca|. By ∠abc we denote the angle between the shortest paths [ba] and [bc]
at b (if this angle is well-defined).

We need to extend the Euclidean notion of angle to the metric context.

Definition 6 ([19], Definition 3.6.25 & 3.6.26). Let x, y, z be three distinct points in a metric
space (X, distX). The comparison angle xyz, denoted by ∠̃xyz or ∠̃(x, y, z) is defined by

∠̃xyz = arccos
distX(x, y)

2 + distX(y, z)
2 − distX(x, z)

2

2 distX(x, y) distX(y, z)

Let α : [0, ϵ) → X and β : [0, ϵ) → X be two paths in a length space X emanating from the
same point p = α(0) = β(0). We define the angle ∠(α, β) between α and β as

∠(α, β) = lim
s,t→0

∠̃(α(s), p, β(t))

if the limit exists.
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Figure 1.3: [19, Chapter 4, page 108] Different triangles in terms of the curvature.

In our context, ∠abc is the one formed by the geodesics α = [ba], β = [bc] and p = b.
Once we have a triangle △abc ⊂ X , we construct a comparison triangle △ãb̃c̃ in the

Euclidean plane with the same lengths of sides,

|ab| = |ãb̃|, |bc| = |̃bc̃|, |ac| = |ãc̃|.

Definition 7 ([19], Definition 4.1.9). The space (X, distX) is a space of nonpositive (resp.
nonnegative) curvature if in some neighbourhood of each point the following holds:

For every △abc and every point d ∈ [ac], one has |db| ≤ |d̃b̃| (resp. |db| ≥ |d̃b̃|) where d̃ is
the point on the side [ãc̃] of a comparison triangle △ãb̃c̃ such that |ad| = |ãd̃|.

Remark. The assertion of this previous definition regarding nonpositive curvature is known
as Triangle condition or CAT (0) condition. For that reason, spaces fitting this definition are
called CAT (0)-spaces.

CAT stands for the comparison of Cartan–Alexandrov–Toponogov and (0) means that we
impose zero as the upper curvature bound (i.e., we are using the Euclidean plane). As the reader
may imagine, we can replace the Euclidean plane with other spaces with constant curvature
(such as spheres), so we can generalize the definition to CAT (κ)-spaces, κ ∈ R. See Figure
1.3. For more information, we encourage the reader to check [3, 19, 21, 38].

Example 6 (Examples of CAT (κ)-spaces).

• The n–Euclidean space En with the canonical metric is a CAT(0)-space.

• The round unit n–sphere Sn is a CAT (1)-space.

• The n–Hyperbolic space Hn with the canonical metric is a CAT (-1)-space.

• We denote by a metric segment (of length ℓ) a metric space isometric to a segment [0, ℓ].
We define a metric graph as the result of gluing a disjoint collection of metric segments
{Ei} and points {vj} along an equivalence relation R defined on the union of the set
{vj} and the set of the endpoints of the segments.

A geodesic metric space (X, distX) is a tree if every triangle is a tripoid, i.e., for every
three points a, b, c ∈ X there exists d ∈ X such that the geodesic segments [ca] and [cb]
intersect in the segment [cd] and also d ∈ [ab]. See Figure 1.4.
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Figure 1.4: A metric tree

Proposition 1.1 ([21]). A metric graph (X, distX) is a CAT (0) space if and only if it is
a tree.

The other inequality gives us another family of interesting spaces. Alexandrov spaces are
general length spaces with a lower curvature bound. They have been widely studied due to their
properties. For the interested reader, here are some important references [2, 20, 34, 36, 75].

Here we present some examples of Alexandrov spaces:

• Euclidean spaces.

• A convex set in an Alexandrov space is obviously an Alexandrov space.

• Riemannian manifolds with sectional curvature bounded from below.

1.2.3 Angle comparison for triangles
The final equivalent definition of the curvature on metric spaces seems to be a reformulation of
the triangle condition, but, surprisingly the proving their equivalence require some work.

If we observe Figure 1.3, it would be obvious to think that ”fat” triangles should have
large angles and “skinny” triangles should have smaller ones. The following definition is the
formalization of that intuition:

Definition 8 ([19], Definition 4.1.15). (X, distX) is a space of nonpositive curvature if every
point of X has a neighbourhood such that, for every triangle △abc contained in this neighbour-
hood, the angles ∠bac, ∠cba and ∠abc are well defined and satisfy the following inequalities:

∠bac ≤ ∠b̃ãc̃, ∠abc ≤ ∠ãb̃c̃, ∠bca ≤ ∠b̃c̃ã. (1.3)

Conversely, (X, distX) is a space of nonnegative curvature if every point of X as a neigh-
bourhood such that, for every triangle △abc, the above angles are also well defined and we
have the opposite inequalities in (1.3). In addition, the following holds: for any two shortest
path [pq] and [rs] where r is an inner point of [pq], one has

∠prs+ ∠srq = π.
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1.3 Some convexity considerations about the distance func-
tion of a metric space

Three assumptions are imposed on a function f : X ×X → R to be a distance and turn (X, f)
into a metric space: symmetry, positiveness and the triangle inequality. Apart from those, any
other constraint on f gives extra structure to the space X , as we have presented in Section
1.2 with the notion of curvature of metric spaces. Martin Kell did it in [57], studying some
convexity properties of the distance function and using them on the initial hypothesis of the
majority of the theorems of that paper; those convexity properties are essential for some of the
results of Section 3.2. We present here most of these definitions that also appear in [57, Section
1].

We begin recalling a basic metric definition:

Definition 9 (Midpoints). We say that (X, dist) admits midpoints if , for every x, y ∈ X , there
is m(x, y) ∈ X such that

dist(x,m(x, y)) = dist(y,m(x, y)) =
1

2
dist(x, y).

Midpoints are the key ingredient for the following three definitions:

Definition 10 (p–convex, p–Busemann curvature and uniformly p–convex). Let (X, dist) be a
metric space that admits midpoints.

1. X is p–convex for some p ∈ [1,∞] if, for each triple x, y, z ∈ X and each midpoint
m(x, y) of x and y,

dist(m(x, y), z) ≤
(
1

2
dist(x, z)p +

1

2
dist(y, z)p

)1/p

.

The space X is called strictly p–convex for p ∈ (1,∞] if the inequality is strict for
x ̸= y and strictly 1–convex if the inequality is strict whenever dist(x, y) > | dist(x, z)−
dist(y, z)|.

2. X satisfies the p–Busemann curvature condition if, for all x0, x1, y0, y1 ∈ X with mid-
points mx = m(x0, x1) and my = m(y0, y1),

dist(mx,my) ≤
(
1

2
dist(x0, y0)

p +
1

2
dist(x1, y1)

p

)1/p

for some p ∈ [1,∞]. If X satisfies the p–Busemann condition, we say that (X, dist) is
p–Busemann. In particular, if p = 1, we say that (X, dist) is Busemann.

It turns out that (X, dist) is a Busemann space if and only if

dist(m(x, z),m(x, y)) ≤ 1

2
dist(z, y).
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3. X is uniformly p–convex for some p ∈ [1,∞] if, for all ϵ > 0, there exists ρp(ϵ) ∈ (0, 1)
such that, for every x, y, z ∈ X satisfying

dist(x, y) > ϵ

(
1

2
dist(x, z)p +

1

2
dist(y, z)p

)1/p

, for some p > 1,

or

dist(x, y) > | dist(x, z)− dist(y, z)|+ ϵ

(
1

2
dist(x, z) +

1

2
dist(y, z)

)
, for p = 1,

the following inequality holds:

dist(m(x, y), z) ≤ (1− ρp(ϵ))

(
1

2
dist(x, z)p + dist(y, z)p

)1/p

.

For example, every CAT(0)–space is uniformly 2–convex.

Remark. By [57, Lemma 1.4., Corollary 1.5.], the following assertions hold taking into ac-
count the previous definitions:

• A uniformly p–convex metric space is uniformly p′–convex for all p′ ≥ p.

• Assume (X, dist) is Busemann. Then (X, dist) is strictly (resp. uniformly) p–convex for
some p ∈ [1,∞] if and only if it is strictly (resp. uniformly) p–convex for all p ∈ [1,∞].

• Any CAT(0)–space is both Busemann and uniformly 2–convex, thus uniformly p–convex
for every p ∈ [1,∞].

Finally, another interesting property we can impose to the metric spaces is the reflexivity, an
intersection phenomena with multiple reformulations. We have decided to display the following
due to its readability:

Definition 11 (Reflexive metric space, Definition 2.1. [57]). Let I be a directed set. A metric
space (X, dist) is reflexive if, for every non–increasing family {Ci}i∈I ⊂ X of non–empty
bounded closed convex subsets (i.e. Ci ⊂ Cj whenever i ≥ j), we have⋂

i∈I

Ci ̸= ∅.

1.4 Submersions and submetries
Maps between spaces are always a fruitful configuration in order to extract properties for those
spaces. In the case of Riemannian manifolds, there are two big families of functions: em-
beddings/immersions and submersions. Here, we present the definition and some examples of
Riemannian submersions and its generalization to metric spaces, the so-called submetries.

Definition 12 (Riemannian submersion). A differentiable map π : Mm+n → Bn is called a
submersion if π is surjective, and for all p ∈ M , dπp : TpM → Tπ(p)B has rank n. If M and
B have Riemannian metrics, the submersion π is said to be Riemannian if, for all p ∈ M ,
dπp : TpM → Tπ(p)B preserves the lengths of vectors orthogonal to Fp, where Fp := π−1(p).
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Example 7. Let

π : T2 = S1 × S1 → S1

(p1, p2) 7→ p1

be the projection onto the first factor. Thus, π is a Riemannian submersion.

Example 8. Let (M, g) be a Riemannian manifold and G a Lie group that acts isometrically,
freely and properly on M . Let N = M/G be the quotient space equipped with the quotient
metric. Then, the projection π : M → N is a Riemannian submersion.

The definition of a Riemannian submersion was generalized to metric spaces under the
notion of the submetry. It is a purely metric version of Riemannian submersions. The reader
can find more information in [9, 10, 42]. Here, we also present the definition:

Definition 13 (Submetry). A submetry between metric spaces is a map π : X → B such that
for every p ∈ X , any closed ball B(p, r) of radius r > 0 centered at p maps onto the ball
B(π(p), r).

Indeed, the generalization was proved on [10]:

Theorem 1.1 ([10], Theorem A). Let Φ: M → B a submetry between Riemannian manifolds.
Then Φ is a C1,1 Riemannian submersion.

Moreover, the existence of submetries imposes certain curvature restrictions:

Theorem 1.2 ([10], Theorem C). Let π : M → N be a submetry of complete Riemannian
manifolds where M has nonnegative sectional curvature. Then

1. N has also nonnegative curvature.

2. If N is compact and M is flat, then N is flat.

For the interested reader, we recommend [42] for the relation between submetries and
Alexandrov spaces.

1.5 Optimal Transport and Wasserstein type spaces
The optimal transport problem first appeared in 1781 in the work of Gaspard Monge [70]. The
setting is quite simple: we search for the optimal way to transport one pile of sand to another.
In other words, imagine that the pile of sand is modeled by a probability measure µ and the
new location is ν, another probability measure. So we have to clarify how to move the mass of
µ. This problem involves a cost c of moving a point x (whatever it means in terms of sand) to
its new location T (x). Then, the problem consists in finding certain plan in which to move all
the mass from µ to ν minimizing the cost c.

More formally: let (X, distX) be a complete and separable metric space and let µ, ν be
two probability measures supported on X . Monge’s optimal transport problem consists on
minimizing: ∫

c(x, T (x)) dµ(x), (1.4)

among all measurable maps T : X → X such that T#µ = ν.
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Remark. In the case of Monge’s problem, the cost function c is settled to be distX(x, T (x))
2.

Kantorovich presented a new formulation of the optimal transport problem, in some sense,
weaker than the Monge’s one: instead of imposing the existence of some function T that sends
one measure µ to another ν, he allows the possibility to split mass, i.e., he proposed to minimize
the following functional:

π 7→
∫

distX(x, y)
2dπ, (1.5)

among all admissible measures π ∈ Γ(µ, ν). More, formally:

Definition 14 (Transference plan). A transference plan, admissible plan or admissible measure
between two positive measures µ, ν ∈ P(X) is a finite positive measure π ∈ P(X ×X) (the
set of probability measures on X ×X) which satisfies that, for all Borel subsets A,B of X ,

π(A×X) = µ(A), and π(X ×B) = ν(B).

Remark. The functional (1.5) is linear and the set Γ(µ, ν) of admissible measures is convex
and closed in the weak topology [4]. A measure that minimizes the functional will be called
optimal and the set of all of them will be denoted as Opt(µ, ν).

1.5.1 Wasserstein space
Let (X, dist) be a geodesic space and P(X) denote the set of probability measures on X and
Pp(X) the ones with finite p–moment.

Note that we require 1 = |µ| = |ν| = π(X ×X), so we are not considering all measures of
the product space. We denote by Γ(µ, ν) the set of transference plans between the measures µ
and ν. Then, we define the p–Wasserstein distance for p ≥ 1 between two probability measures
as

Wp(µ, ν) :=

(
min

π∈Γ(µ,ν)

∫
X×X

dist(x, y)pdπ(x, y)

) 1
p

.

The metric space (Pp(X),Wp) is denoted as the p–Wasserstein space of X .
Now, in order to give a general perspective about these spaces, we will present some theo-

rems regarding the topological structure of the Wasserstein space:

Theorem 1.3 ([4], Theorem 3.7). Let (X, dist) be a complete and separable metric space. Then
(P2(X),W2) is complete and separable as well. In addition, any measure may be approximated
by a sequence of totally atomic probability measures (measures with support formed by points).
Also, the following are equivalent:

1. A sequence {µn}n∈N ⊂ P2(X), converges (via some subsequence) in the W2 distance to
a measure µ.

2. µn ⇀ µ and
∫
dist(·, x0)2dµn →

∫
dist(·, x0)2dµ for some x0 ∈ X , where we define

µn ⇀ µ as narrowly convergence to a probability measure µ, if:∫
ϕ dµn →

∫
ϕ dµ as n→ ∞,∀ϕ ∈ Cb(X),

where Cb(X) is the space of bounded continuous functions in X .
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Theorem 1.4 ([91], Remark 6.19; [4], Theorem 3.10 & Proposition 3.16). The space (X, dist)
is compact if and only if (P2(X),W2) is compact. If (X, dist) is only locally compact, then
(P2(X),W2) is not locally compact.

If (X, dist) is a geodesic space, then (P2(X),W2) is geodesic as well. Also, the following
are equivalent:

1. The map t 7→ µt ∈ P2(X) is a geodesic.

2. There exists some measure µ ∈ P2(Geo(X)) such that (e0, e1)# ∈ Opt(µ0, µ1) and

µt = et#µ,

where et is the evaluation map defined as

et : Geo(X) → X

γ 7→ et(γ) = γ(t).

If (X, dist) is a non-branching geodesic space, then (P2(X),W2) is also non-branching.
Moreover, if t 7→ µt ∈ P2(X) is a geodesic, then for all t ∈ (0, 1) there exists a unique optimal
plan in Opt(µt, µ1) and it is induced by a map from µt.

Generalized and Signed Wasserstein distance

A natural question regarding the generalization of the Wasserstein distance and the Wasserstein
space involves measures with different masses or, even more, signed measures. In that sense,
Mainini and Piccoli developed on [67, 78] the notion of Generalized Wassertein distance and
later on they added the signed restriction.

We used both distances on Chapter 4, so we present here the definitions:

Definition 15. [Generalized Wasserstein distance, [67, 78]] Let µ, ν be two positive measures
in M(X) with possibly different mass. The generalized Wasserstein distance between µ and ν
is given for p ≥ 1 a > 0 and b > 0 by

W a,b
p (µ, ν) =

 inf
µ̃,ν̃∈M(X)

|µ̃|=|ν̃|

ap(|µ− µ̃|+ |ν − ν̃|)p + bpW p
p (µ̃, ν̃)

1/p

.

Definition 16. [Signed Generalized Wasserstein distance, [67, 78]] Let µ, ν ∈ Ms(X). We
define their distance by

Wa,b
1 (µ, ν) := W a,b

1 (µ+ + ν−, µ− + ν+),

where Ms(X) are the signed and finite measures on X .

With this definition in mind, we can introduce the following norm:

Definition 17. For Ms(X) and a > 0, b > 0, we define

||µ||a,b := Wa,b
1 (µ, 0) = W a,b

1 (µ+, µ−),

where µ+ and µ− are any positive measures of M(X) such that µ = µ+ − µ−.

This norm turns (Ms(X), || · ||a,b) into a normed vector space [78, Proposition 21]. More-
over, for any a, b > 0 the norm || · ||a,b is equivalent || · ||1,1 [78, Proposition 23]. We used that
result on Chapter 4 in order to facilitate the computations.
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1.5.2 Orlicz–Wasserstein space

In this section, we present the Orlicz–Wasserstein space, a generalization of the Wasserstein
space. Let ϑ : R+ → R+ be a strictly increasing, continuous function. Assume ϑ admits
a representation ϑ = φ ◦ ψ as a composition of a convex and a concave function φ and ψ,
respectively. This includes all C2 functions [82, Example 1.3.].

Definition 18 (Lϑ–Wasserstein space and distance). Let (X, dist) be a complete separable
metric space. The Lϑ–Wasserstein space Pϑ(X) is defined by all probability measures µ in
X such that ∫

X

φ

(
1

t
ψ(dist(x, y))

)
dµ(x) <∞.

The Lϑ–Wasserstein distance of two probability measures µ, ν ∈ Pϑ(X) is defined as

Wϑ(µ, ν) = inf

{
t > 0 : inf

π∈Γ(µ,ν)

∫
X×X

φ

(
1

t
ψ(dist(x, y))

)
dπ(x, y) ≤ 1

}
.

The function Wϑ is a complete metric on Pϑ(X) (see [82], Proposition 3.2). The metric
space (Pϑ(X),Wϑ) is known as the ϑ-Orlicz–Wasserstein space of X .

Notice that for every x ∈ X , the probability measure δx belongs to Pϑ(X). Therefore, we
can embed the metric space X inside its Orlicz–Wasserstein space by mapping x 7→ δx. In
addition, this map is an isometric embedding if and only if ψ ≡ Id and φ(1) = 1. Moreso, if
φ = distp, then we obtain the usual p–Wasserstein space.

On this spaces, we also have some of the properties we extract from the usual Wasserstein
space. Here, we present a similar result to Theorem 1.4:

Proposition 1.2 ([56], Proposition A.6). Let (X, dist) be a geodesic space, then (Pϑ(X),Wϑ)
is also geodesic.

We recommend [56, 82] in order to obtain more information about these spaces.

1.5.3 Space of Persistence Diagrams

The importance of Data Science has been reaching every field in mathematics. Topology and
geometry are facing this wave of information analysis with new perspectives that are helping
to face some challenges concerning high dimensionality of the data sets or its inner structure.
One of this ongoing fields is Topological Data Analysis (TDA).

The key tool used on TDA is the persistence diagram. This set of point capture all the output
of the data analysis and has very useful graphical representations (see Fig 1.5) for understanding
the set. In addition, we can endow the space of persistence diagrams with Wasserstein type
distances, that in the daily work with this objects help with the computations due to their useful
implementations in different coding languages.

We begin this section presenting the definition of a persistence diagram:

Definition 19 (Persistence diagram, [18]). A persistence diagram is a function from a count-
able set I to R2

<, i.e. D : I → R2
<, where R2

< = {(x, y) ∈ R2 : x < y}.
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In this definition, all the points have multiplicity one. Other authors suggest considering
persistence diagrams as multisets of points, i.e. sets of points where we can repeat points (see
[27, 26, 69, 89]). This consideration is closer to the performance of the persistence diagrams
in the TDA setting as various homological features can have the same birth and death.

Moreover, Che, Galaz-Garcı́a, Guijarro and Membrillo-Solis defined in [27, 26] the notion
of generalized persistence diagrams Dgm(X,A) (in this setting the persistence diagram defined
in Definition 19 will be Dgm2(R2,∆) where ∆ ⊂ R2 denotes the diagonal) extending the
notion of persistence diagrams beyond the Euclidean setting and presenting a general definition
for points in metric spaces.

Figure 1.5: A Persistence Diagram of a point cloud over a 2–dimensional sphere

We construct a Wassertein type distance on the space of persistence diagrams:

Definition 20 (Partial matching, [18]). Let D1 : I1 → R2
< and D2 : I2 → R2

< be persistence
diagrams. A partial matching between them is a triple (I ′1, I

′
2, f) such that I ′1 ⊆ I1, I ′2 ⊆ I2,

and f : I ′1 → I ′2 is a bijection.

Definition 21 (Cost of a partial matching, [18]). Let D1 : I1 → R2
< and D2 : I2 → R2

< be
persistence diagrams and (I ′1, I

′
2, f) a partial matching between them. We endow R2 with the

infinity metric dist∞(a, b) = ||a− b||∞ = max(|ax − bx|, |ay − by|). Observe that, for a ∈ R2
<,

we have that dist∞(a,∆) = inft∈∆ dist∞(a, t) = (ay − ax)/2. We denote by costp(f) the
p–cost of f , defined as follows. For p <∞, let

costp(f) =
(∑

i∈I′1

dist∞(D1(i), D2(f(i)))
p +

∑
i∈I1\I′1

dist∞(D1(i),∆)p

+
∑
I2\I′2

dist∞(D2(i),∆)p
)1/p

,
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and for p = ∞, let

cost∞(f) = max
{
sup
i∈I′1

dist∞(D1(i), D2(f(i))), sup
i∈I1\I′1

dist∞(D1(i),∆),

sup
i∈I2\I′2

dist∞(D2(i),∆)
}
.

If any of the terms in either expression is unbounded, we declare the cost to be infinity.

Now we can define the distance functions and the metric space of persistence diagrams:

Definition 22 (p–Wasserstein distance and bottleneck distance of persistence diagrams, [30]).
Let 1 ≤ p ≤ ∞ and D1, D2 persistence diagrams. Define

w̃p(D1, D2) = inf{costp(f) : f is a partial matching between D1 and D2}.

Let (Dgmp, wp) denote the metric space of persistence diagrams D such that w̃p(D, ∅) < ∞
with the relation D1 ∼ D2 if w̃p(D1, D2) = 0, where ∅ is the unique persistence diagram with
empty indexing set. The metric wp is called the p–Wasserstein distance and w∞ is called the
bottleneck distance.

Recall that in Section 1.2.2 we present the notion of an Alexandrov space. If we endow the
space of persistence diagrams (Dgm2, w2) with the 2–Wasserstein metric, then

Theorem 1.5 (Turner, Mileyko, Mukherjee & Harer, [89]). The space of Persistence Diagrams
(Dgm2, w2) is a non-negatively curved Alexandrov space.

For generalized persistence diagrams, Che, Galaz-Garcı́a, Guijarro and Membrillo-Solı́s,
proved a similar result:

Theorem 1.6 (Che, Galaz-Garcı́a, Guijarro & Membrillo-Solı́s, [26], Theorem B). If X is
a proper Alexandrov space with non-negative curvature, then Dgm2(X,A) is an Alexandrov
space with non-negative curvature.

1.6 Reach of a subset
In [32], Federer studied properties about convex subsets of the n–Euclidean space. In that
sense, he defined the concept of the reach of a subset A as some kind of measurement of the
ϵ–neighbourhood around A only containing points of the ambient space with a unique metric
projection on A.

Definition 23 (Unique points set and reach, [32]). Let (X, dist) be a metric space and A ⊂ X
a subset. We define the set of points having a unique metric projection in A as

Unp(A) = {x ∈ X : there exists a unique a such that dist(x,A) = dist(x, a)}.

For a ∈ A, we define the reach of A at a, denoted by reach(a,A), as

reach(a,A) = sup{r ≥ 0 : Br(a) ⊂ Unp(A)}.

Finally, we define the global reach by

reach(A) = inf
a∈A

reach(a,A).
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Figure 1.6: reach(S1 ⊂ R2) = 1 due to its center while reach(D1 ⊂ R2) = ∞.

The intuitive idea is that reach(A) = 0 if and only if we do not have an ϵ–neighbourhood
of A admitting a metric projection onto A. Conversely, reach(A) = ∞ will occur if and only
if the entirety of X admits a metric projection into A.

Remark. Let M ⊂ En be a compact C2–submanifold of the n–Euclidean space. Due to the
normal neighbourhood theorem, we obtain that

reach(M ⊂ En) > 0.

Example 9. Let S1 ⊂ R2. As there exists a point 0 ∈ R2, that is the center, at the same distance
of every point of S1, we have that

reach(S1 ⊂ R2) = 1,

whereas in the case of D2 ⊂ R2, we obtain that

reach(D2 ⊂ R2) = ∞.

With these two subsets of R2, we can construct a sequence of subsets to prove that reach
is not continuous under Gromov–Hausdorff distance (see [19] for more information about that
distance): let Cr = {D2\D2

r} such that r → 0, where D2 is considered with radius 1 and D2
r has

radius r, then
reach(Cr ⊂ R2) = r, but reach(D2 ⊂ R2) = ∞.

The interested reader can look at [88], a survey by Christop Thälle with a rigorous review
about the most relevant results in the area. More related work about positive reach and Rie-
mannian geometry can be found in the papers written by Kapovitch and Lytchak [48, 65, 66].
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Chapter 2

Filling Radius and the L∞ space of a
Riemannian manifold

We present some results concerning an invariantof Gromov’s called Filling Radius. It is based
on the tubular neighbourhoods of the Kuratowski embedding. We prove an upper and a lower
bound for the Filling Radius as well as some estimations for the k–intermediate filling radius.

This chapter is based on the paper: Manuel Cuerno and Luis Guijarro. “Upper and lower
bounds on the filling radius”. In: Indiana Univ. Math. J. (2022). URL: https://arxiv.
org/abs/2206.08032. Forthcoming.

2.1 The Kuratowski embedding
Let (Mn, g, distM) be a closed (compact without boundary) n–dimensional Riemannian mani-
fold with a metric g and a distance function distM , and

L∞(M) = {f : M → R : ||f ||∞ = sup
p∈M

|f(p)| <∞}.

We denote as distp(·) = distM(p, ·) : M → R. There is a natural embedding, called Kuratowski
embedding, of M ↪→ L∞(M) defined as:

Φ: M → L∞(M)

p 7→ distp .

The Kuratowski embedding can also be extended to compact metric spaces.

Proposition 2.1. The Kuratowski embedding is, indeed, an isometry, i.e.,

dist∞(distp, distq) = || distp− distq ||∞ = distM(p, q), ∀p, q ∈M.

Proof. We split the proof in two inequalities:

1. ≥)

|| distp− distq ||∞ = sup
x∈M

| distp(x)− distq(x)|

≥
x=q

| distp(q)| = distM(p, q).
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2. ≤) Using the triangle inequality yields:

|| distp − distq ||∞ = sup
x∈M

| distp(x)− distq(x)|

≤ sup
x∈M

| distp(q)| = distM(p, q).

Remark. This isometry provides an interesting geometric property aboutL∞(M): the geodesics
of M are geodesics of L∞(M). Even more, as L∞(M) is a vector space, the segments are also
geodesics. So, if we join p, q ∈ M ⊂ L∞(M) by a segment, i.e. a minimizing geodesic in
L∞(M), we know the ”size” of the segment in terms of the geodesic distance in M . Even
more, the Kuratowski embedding is preserved under translations by an arbitrary function. So,
indeed, we have infinite isometric copies of M into L∞(M).

2.2 Filling radius
For a given coefficient group F (as Gromov stated in [39] F = Z in the oriented case and F = Z2

in the non-oriented), consider the homomorphism induced in n-homology by the inclusion

ιr,∗ : Hn(M,F) → Hn(Ur(M),F),

where Ur(M) denotes the r–neighbourhood of M ⊂ L∞(M).

Definition 24 (Filling Radius, [39]). The filling radius of M , denoted by FillRad(M), is the
infimum of those r > 0 for which ιr,∗([M ]) = 0, where [M ] is the fundamental class of M .

In his seminal paper [39], Gromov stated two interesting observations related to the con-
struction of Definition 24. First, the filling radius decreases under distance-decreasing maps.
This is due to a universal property of L∞(M): an arbitrary distance-decreasing map of a sub-
space of a metric space into L∞(M),

Y → L∞(M) for Y ⊂ X, (2.1)

extends to a distance-decreasing map X → L∞(M). We can extend y → fy(·) ∈ L∞(M) by
the following function:

x→ fx(·) = inf
y∈Y

(fy(·) + distX(x, y)),

for all x ∈ X . Moreover, every distance-decreasing map X1 → X2 extends to a distance-
decreasing map L∞(X1) → L∞(X2). As there exists a distance-decreasing map X1 → X2,
due to the Kuratowski embedding, we can build a distance-decreasing map X1 → L∞(X2).
Furthermore, as X1 ⊂ L∞(X1), due to the property explained above, we obtain the distance-
decreasing application L∞(X1) → L∞(X2).

Thus, if X1 → X2 is distance-decreasing and a degree one map (for more information
about degree one maps we recommend [44]), we have that [X1] → ±[X2], where [·] denotes
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the fundamental class. Now, if r < FillRad(X2), we have that ιr,∗([X2]) ̸= 0. Then by
following the diagram,

[X1]

��

// [X2]

��
ιr,∗([X1]) // ιr,∗([X2])

(2.2)

we also have that ιr,∗([X1]) ̸= 0 and then

FillRad(X1) ≥ FillRad(X2).

Secondly, the construction of the filling radius could be done whenever an isometric embed-
ding of the manifold exists but Gromov, indeed, proved that the one provided by the Kuratowski
embedding gives the minimum value of any other filling radius. Using the same extension
property as in the proof of the above observation, we can construct a distance-decreasing map
M ↪→ X → L∞(M). Now, as we have an isometry in (2.1) due to the Kuratowski embedding,
using the same argument as in diagram (2.2), we obtain that

FillRad(M ⊂ X) ≥ FillRad(M ⊂ L∞(M)).

Although the Filling Radius seems difficult to compute, Katz [53, 54, 55] obtained some
values for it for some manifolds:

1.

FillRad(Sn) =
1

2
arccos

(
− 1

n+ 1

)
,

where we endow Sn with the canonical metric of constant curvature 1.

2.
FillRad(RP n) =

1

3
diam(RP n) =

π

6
,

where we endow RP n with the metric of constant curvature 1.

3.

FillRad(CP 1) = FillRad(CP 2) =
1

2
arccos

(
−1

3

)
,

where we endow CP 1 and CP 2 with a metric with curvature 1
4
≤ K ≤ 1.

4.

FillRad(CP n,Q) =
1

2
arccos

(
−1

3

)
,

where the field used to compute the homology is Q and CP n has the canonical metric
with curvature 1

4
≤ K ≤ 1.

We also have the following inequalities [54]:

1.

FillRad(CP n) ≥ 1

2
arccos

(
−1

3

)
.
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2.

FillRad(CaP 2) ≥ 1

2
arccos

(
−1

9

)
.

3.

FillRad(HP n) ≥ 1

2
arccos

(
−1

5

)
.

The lack of explicit computations for the general case shows how difficult working with
this invariant is.

There are some other important inequalities regarding the Filling Radius. The most impor-
tant one is due to Gromov [39] and involves the Riemannian volume of an n–manifold and a
constant depending on the dimension:

Theorem 2.1 ([39]). Let V be a closed Riemannian connected Riemannian n–manifold. Then

FillRad(V ) ≤ C(n)(vol(V ))1/n,

for some universal constant
0 < C(n) < (n+ 1)nn

√
n!.

Another important result is the one obtained by Katz [54] bounding any closed Riemannian
manifold M by its diameter and the spread:

Theorem 2.2 ([54]). Let M be a closed Riemannian manifold, if its Filling Radius exists, then

FillRad(M) ≤ 1

3
diam(M).

Moreover,

FillRad(M) ≤ 1

2
Spread(M),

where the Spread(M) is the smallest R > 0 so that there is a closed subset Y ⊂ M with
diam(Y ) ≤ R and distM(x, Y ) ≤ R for every x ∈M .

The Filling Radius has also been studied under curvature assumptions on M . In that sense,
Wilhelm and Yokota [93, 95] compared the filling radius of a positively curved space to that of
the unit n–sphere.

Theorem 2.3 (Main Theorem 2, [93]). Let Sn denote the unit sphere in Rn+1, and let M denote
the class of closed, Riemannian n–manifolds with sectional curvature ≥ 1. For all M ∈ M,

1. FillRad(M) ≤ FillRad(Sn).

2. If FillRad(M) = FillRad(Sn), then M is isometric to Sn.

3. There is a δ(n) > 0 so that if FillRad(Sn)− δ(n) > FillRad(M), then M is diffeomor-
phic to Sn.

4. If FillRad(M) > π
6

then M is a twisted sphere.
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In order to present the result for Alexandrov spaces we need to define the contractibility
radius Contk Rad(X) of a metric space X . Firstly, we introduce the concept of k–degenerate
map:

Definition 25 (k–degenerate map, [39]). A continuous map f : X → Y between metric spaces
is sad to be k–degenerate if it factors as f = f ′ ◦ f ′′ through a k–dimensional polyhedron K
for some continuous maps f ′ : K → Y and f ′′ : X → K.

Remark. With the definition of k–degenerate maps and

Diam f = sup
x1,x2∈X

[distX(x1, x2)− distY (f(x1), f(x2))],

for f : X → Y between metric spaces, Gromov also defines in [39] the k–diameter of X:

DiamkX = inf
f,Y

Diam f.

Definition 26 (Contractibility radius, [39]). For an arbitrary compact subspace V in a metric
space X we define the contractibility radius Contk Rad(V ⊂ X) to be the lower bound of ϵ >
0, for which the inclusion map of V into its ϵ–neighbourhood V ⊂ Uϵ(V ) is a k–contractible
map, i.e., a continuous map between two metric spaces that is homotopic to a k–degenerate
map.

Theorem 2.4 (Corollary 8, [96]). For any n–dimensional Alexandrov space X of curvature
≥ 1 with ∂X = ∅, either FillRad(X) < FillRad(Sn) or X is isometric to the round sphere Sn.

Moreover, for any n–dimensional Alexandrov space X of curvature ≥ 1, either

Contk Rad(X) < Contk Rad(Sn) = ln/2

for any 0 ≤ k ≤ n− 1 or X is isometric to the round sphere Sn.

The Filling Radius is such an interesting invariant that even a foreign field as Topological
Data Analysis (TDA) has tried to used it in order to obtain results. In this case, we can see how
Mémoli et. al on [63] used it in order to extract properties of the persistence diagram, PDn

(recall that a definition of a persistence diagram can be found on Section 1.5.3), of the highest
dimension:

Proposition 2.2 ([63], Proposition 9.4). LetM be a closed connected Riemannian n–manifold.
Then,

(0, 2FillRad(M)) ∈ PDn(V R(M);F),

where V R(M) denotes the Vietoris–Rips construction over M and F is any field if M is ori-
entable and F = Z2 ifM is non-orientable. Moreover, this is the unique point in PDn(V R(M))
with x–coordinate equal to 0.

They also proved an interesting result concerning the stability of the filling radius:

Proposition 2.3 ([63], Proposition 9.10). Let M be a closed connected n–dimensional man-
ifold. Let dist1M and dist2M be a two metrics on M compatible with the manifold topology.
Then,

|FillRad(M, dist1M)− FillRad(M, dist2M)| ≤ || dist1M − dist2M ||∞.
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2.3 Positiveness of the Filling Radius
In this section, we give a lower bound for the Filling Radius of an arbitrary closed Riemannian
manifold in terms of its injectivity radius and an upper curvature bound.

The following result, a particular case of the main Theorem in [1], will be of particular
importance.

Theorem 2.5 ([1], Main Theorem). Let (M, g) be a complete Riemannian manifold with sec ≤
K, and ν a probability measure in M such that its support is contained in a ball of radius ρ
where

ρ <
1

2
min

{
injM ,

π√
K

}
.

Then the function F2 : M → R defined as F2(q) = 1
2

∫
M

dist2(p, q) dν(p) has a unique
minimizer.

A similar statement appears in [37, Remark on Section 3]. Greene and Petersen showed the
positiveness of the Filling Radius in terms of the convexity radius of the space. As far as we
know, this is the first extended proof for this estimation:

Theorem 2.6 (C. & Guijarro, [31]). Let M be a closed Riemannian manifold with injectivity
radius injM and with sectional curvature sec ≤ K, where K ≥ 0. Then

FillRad(M) ≥ 1

4
min

{
injM ,

π√
K

}
, (2.3)

where π/
√
K is understood as ∞ whenever K = 0.

Proof. We will show that there is a continuous retraction of the tubular neighbourhood Φ :
UR(M) → M , by associating to each function f ∈ UR(M) the center of mass of a set in M
associated to f (see [40], [51], [1]). To improve readability, we will denote the right hand side
in (2.3) by R0. For each R > 0, denote by UR(M) the open R-neighbourhood of M inside
L∞(M), i.e.,

UR(M) = { f ∈ L∞(M) : dist(f,M) < R } .

Whenever f ∈ UR, we define the vicinity set of f as

AR
f := { p ∈M : ∥f − distp ∥ ≤ R } .

It is clear from the definition that the setsAR
f are closed with nonempty interior, and forR ≤ R′,

there is an inclusion AR
f ⊂ AR′

f ; we also have that if p, q ∈ AR
f , then

dist(p, q) = || distp − distq ||∞ ≤ 2R,

by the triangle inequality, thus diamAR
f ≤ 2R. Furthermore, if p ∈ AR

f , and g ∈ L∞(M), then

|| distp −g||∞ ≤ ||f − g||∞ + || distp −f ||∞,

and therefore p ∈ A
R+||g−f ||∞
g . Interchanging the roles of f and g, we get the sequence of

inclusions
AR

f ⊂ AR+||g−f ||∞
g ⊂ A

R+2||g−f ||∞
f .

22



Notice also that, as ε→ 0, we get that

AR+ε
f → AR

f , that is,
⋂
ε>0

AR+ε
f = AR

f .

We will denote the characteristic function of a set A as χA and the Riemannian measure of
M as d vol. If we have a sequence fn → f in L∞(M), we have that, writing εn = ||fn − f ||,
we obtain∫

M

|χAR
fn

− χAR
f
| d vol ≤

∫
M

|χAR
fn

− χAR+εn
f

| d vol+
∫
M

|χAR+εn
f

− χAR
f
| d vol,

and thus ∫
M

|χAR
fn

− χAR
f
| d vol → 0, (2.4)

as n→ ∞.
The set AR

f has nonempty interior, since it contains the set of points with ||f −distq || < R,
thus its volume in M does not vanish. We can then consider the probability measure in M
defined as

νf =
1

vol(Af )
χAf

d vol,

where vol is the Riemannian volume and χAf
is the characteristic function of the set Af . Its

support isAf , and thus it has diameter less or equal than 2R. Observe that as fn → f in L∞, the
characteristic functions of Afn converge to the characteristic function of Af , and consequently,
for any continuous function g :M → R,∫

M

g(x)dνfn →
∫
M

g(x)dνf .

Let 0 < R < R0, where R0 was defined as the right hand side in inequality (2.3). For any
f ∈ UR, its vicinity set is contained in a ball of radius 2R, thus the main result in [1, Theorem
2.1] can be applied to the measure νf to obtain a unique point p ∈M characterized as the single
minimizer of the function

F f
2 :M → R, F f

2 (q) :=
1

2

∫
M

d2(p, q) dνf (p).

From equation (2.4), it is clear that the assignment Φ : UR(M) → M mapping f to p is
continuous. Moreover, when f = distp, AR

f = BR(p), and the minimum of F f
2 agrees with p,

thus Φ is a retraction, and
M

ιR0−−−→ UR0(M)
Φ−−→M

is the identity map and (Φ ◦ ιR0)#[M ] = [M ]. However, if R0 > FillRad(M), (ιR0)#[M ] = 0.
This finishes the proof.

Corollary 2.6.1. Let (M, g) be a closed Riemannian manifold, then

FillRad(M) ≥ co > 0.
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2.4 Filling Radius bounds of Riemannian submersions
On [31], we obtained a lower bound for the total spaceM of a Riemannian submersion in terms
of the diameter of the fibers:

Theorem 2.7 (C. & Guijarro, [31]). Let π : M → B be a Riemannian submersion with
dimM > dimB. Then

FillRad(M) ≤ 1

2
max
b∈B

{diamπ−1(b)}, (2.5)

where the diameter of each fiber is considered in the extrinsic metric.

Proof. To facilitate the writing, denote by ρ0 the right hand side in (2.5). As π is a Riemannian
submersion, we can isometrically embed B ↪→ L∞(M) with the map

φ1 : B → L∞(M), b→ distb(π(·)), (2.6)

where distb(π(z)) := distB(b, π(z)), for all z ∈M .
Next, we translate this embedding by adding ρ0, that is, we have an isometric embedding

φ : B → L∞(M), b→ fb,

where
fb :M → R, fb(z) := distb(π(z)) + ρ0.

We will construct a deformation retract ofM onto the image φ(B) adapting the main idea in
[54, Lemma 1] to our situation. The difference will be that, instead of constructing a cone over
M in a tubular neighbourhood of M , we will construct a mapping cylinder of the Riemannian
submersion π :M → B. For this, define ρ0 as the upper bound in (2.5), i.e,

ρ0 :=
1

2
max
b∈B

{diamπ−1(b)},

where the diameter of each fiber is computed as

diamπ−1(b) := max{ distx(y) : π(x) = π(y) = b },

and for each t ∈ [0, ρ0], and for each p ∈ π−1(b), construct the function

disttp(z) =

{
min {distp(z) + t, fb(z)}, if distp(z) < fb(z)

max {distp(z)− t, fb(z)}, if distp(z) ≥ fb(z).

We start by proving that || disttp − distp ||∞ ≤ t. For this, we consider two cases:

1. When distp(z) < fb(z), the function disttp is given by min {distp(z)+ t, fb(z)}; then we
need to estimate

max
{z∈M : distp(z)<fb(z)}

|min {distp(z) + t, fb(z)} − distp(z)|.
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For this, we are going to use the sets:

A = {z : distp(z) < fb(z)},
B = {z : distp(z) + t > fb(z)},
Bc = {z : distp(z) + t ≤ fb(z)}.

If z ∈ A ∩Bc, we have that

max
z∈A∩Bc

| disttp(z)− distp(z)| = max
z∈A∩Bc

| distp(z) + t− distp(z)| = t.

On the other hand,

A ∩B = {z : distp(z) < fb(z) < distp(z) + t} = {z : 0 < fb(z)− distp(z) < t},

so, if z ∈ A ∩B, we have that

max
z∈A∩B

| disttp(z)− distp(z)| = max
z∈A∩B

|fb(z)− distp(z)| < t.

Therefore, on A we have obtained that

| disttp − distp | ≤ t.

2. Suppose next that z ∈ Ac, i.e., distp(z) ≥ fb(z). Now, we have to compute

max
{z∈M : distp(z)≥fb(z)}

|max {distp(z)− t, fb(z)} − distp(z)|.

In this case, we take the partition of M given by the sets

C = {z : distp(z)− t > fb(z)}.
Cc = {z : distp(t)− t ≤ fb(z)}.

If z ∈ Ac ∩ C, we have that

max
z∈Ac∩C

| disttp(z)− distp(z)| = max
z∈Ac∩C

| distp(z)− t− distp(z)| = t.

On the other hand,

Ac ∩ Cc = {z : distp(z) ≥ fb(z) ≥ distp(z)− t} = {z : 0 ≤ distp(z)− fb(z) ≤ t},

and
max

z∈Ac∩Cc
| disttp(z)− distp(z)| = max

z∈Ac∩Cc
|fb(z)− distp(z)| ≤ t.

Thus, on Ac we have that | disttp− distp | ≤ t, and combining it with the above, we have
finally obtained that

|| disttp − distp ||∞ ≤ t.

We prove next that for ρ0 as defined as the upper bound in (2.5), we have that

distρ0p = fb, where b = π(p).

Once again, we divide into cases:
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1. If z ∈ A, then our claim is clear, since for any Riemannian submersion,

dist(p, z) ≥ distB(π(p), π(z)),

and thus
fb(z) = distB(π(p), π(z)) + ρ0 ≤ dist(p, z) + ρ0.

2. On the other hand, for any z ∈ M , we have that there is at least one point q in the fiber
through p with dist(z, q) = distB(π(z), π(p)), thus (see Figure 1)

dist(p, z) ≤ dist(p, q) + dist(q, z) ≤ diamπ−1(b) + distB(π(z), π(p)) ≤ fb(z) + ρ0.

Figure 2.1:

If Cylπ is the cylinder map of π :M → B, the map disttp induces a map

ψ : Cylπ → L∞(M), [p, t] → disttp(·)

where ψ(p, 0) agrees with the Kuratowski embedding of M , and ψ(M,ρ0) agrees with the
image of the inclusion of B in L∞(M) given by b→ fb. Moreover, the image of ψ is contained
in the tubular neighbourhood of radius ρ0 around M by the above computations. Since Cylπ
retracts onto ψ(M,ρ0), and dimB < dimM , the image of the fundamental class ofM vanishes
in Uρ0 , finishing the proof.

There is a better estimate for Riemannian products, since Gromov proved in [39] that the
filling radius of a product satisfies FillRad(M1 × M2) = min(FillRad(M1),FillRad(M2)).
For warped products our theorem provides:

Corollary 2.7.1. For B,F closed Riemannian manifolds, let f : B → (0,∞) be a smooth
function, and M = B ×f F the warped product over B with fiber F . Then

FillRad(M) ≤ min{FillRad(B),
1

2
max f · diamF }.
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Proof. FillRad(M) can not exceed half the maximum diameter of the fibers by the previous
theorem; by the definition of warped product, this explains the second term appearing in the
above minimum. FillRad(B) appears by exactly the same explanation as in [39, Pages 8-9]

2.5 Filling radius of submetries

As it is remarked in [63], the definition of filling radius does not require the distance of M to
come from a Riemannian metric. It suffices that d̂istM generates the manifold topology. We
call any (M, d̂istM) satisfying this condition a metric manifold.

When going over the proof of Theorem 2.7, it is clear that the proof is entirely metric, and,
except for the total space needing enough structure to have a fundamental class, the rest of the
arguments carry verbatim to provide the following result:

Corollary 2.7.2. Let (X, d̂istX) be a metric manifold (i.e, a closed manifold with a distance),
(Y, distY ) a metric space and π : X → Y a submetry between them. Thus

FillRad(X) ≤ 1

2
max
y∈Y

{diamπ−1(y)}.

We should mention that, in the above corollary, X does not need to be a manifold at all; for
instance, X can be replaced by a closed Alexandrov space, since such spaces have fundamental
classes by the work of Yamaguchi in [94].

This corollary has some useful consequences that extend Theorem 2.7:

Corollary 2.7.3. Suppose M is a Riemannian manifold admitting a singular Riemannian foli-
ation F with closed leaves. Then

FillRad(M) ≤ 1

2
max
N∈F

{diamN}.

As an example of the above, recall that when G is a compact Lie group acting by isometries
on a closed Riemannian manifold M , the orbits of G form a singular Riemannian foliation in
M , thus the filling radius of M cannot exceed one half the diameter of the orbits.

Example 10. We can give an example where the bound in Corollary 2.7.2 is better than the
one–third–diam bound. Let Mn be a cohomogeneity one manifold with Grove-Ziller diagram
H ⊂ K = K ′ ⊂ G (see [41, 46]). Then Mn can be given a cohomogeneity one metric
containing a product cylinder G/H× [−ℓ, ℓ] with ℓ as large as desired. Its diameter will exceed
2ℓ, while the diameter of the fibers of M/G remains uniformly bounded above.

2.6 Intermediate Filling Radius

If, instead of the fundamental class of the manifold, we look at a different fixed homology class
in M , we arrive at the concept of the intermediate filling radius introduced in [63]. We adapt
their definition to the case of M ⊂ L∞(M).

27



Definition 27 (Intermediate Filling Radius). For any integer k ≥ 1, any abelian group F, and
any homology class ω ∈ Hk(M ;F), we define the k-intermediate filling radius of ω as

FillRadk(M,F, ω) := inf{r > 0 : ιr,∗(ω) = 0},

where ιr :M ↪→ Ur(M) is the isometric embedding. This gives us a map

FillRadk(M,F, ·) : Hk(M ;F) → R≥0.

Finally, the intermediate k-filling radius of M is the infimum of the function FillRadk(M,F, ·)
over Hk(M ;F).

We will usually omit F from the notation if it does not create confusion. Our first observa-
tion is to restrict the possible values of FillRadk.

Proposition 2.4. For M as in Theorem 2.6, we have that

FillRadk(M) ≥ 1

4

{
injM ,

π√
K

}
. (2.7)

Proof. For R smaller than the right hand side in (2.7), we have a retraction of UR(M) onto M ,
as proven in Theorem 2.6.

Now, we present a Theorem stated by Liu in [64], that we are going to generalize in our
next result:

Theorem 2.8 ([64], Theorem 1.1). Let V , W be closed, connected, oriented Riemannian n–
manifolds. Suppose f : V → W has nonzero degree. Then

1. if | deg(f)| = 1, FillRad(W ) ≤ C · FillRad(V ).

2. if | deg(f)| > 1, FillRad(W,Q) ≤ C · FillRad(V ),

where

C = dil f = sup
p ̸=p′

distN(f(p), f(p
′))

distM(p, p′)
.

The following theorem can be considered a mild extension of the previous one by Liu to
this intermediate invariant.

Theorem 2.9. Let f : Mm → Nn be a Lipschitz map between closed manifolds such that the
induced map fk,∗ : Hk(M) → Hk(N) is onto. Then

FillRadk(M) ≥ C−1 FillRadk(N).

Proof. As in [64], we extend the map f :M → N → L∞(N) to a map f̃ : L∞(M) → L∞(N)
that remains Lipschitz with the same dilation as f . Then

f̃(UR(M)) ⊂ UC·R(N),
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and we have a commutative diagram in homology

Hk(M)

ι∗
��

fk,∗ // Hk(N)

ι∗
��

Hk(UR(M))
f̃k,∗ // Hk(UC·R(N))

If C · R < FillRadk(N), there is some a ∈ Hk(N) such that ι∗(a) ̸= 0, hence there is some
b ∈ Hk(M) such that f̃k,∗ι∗(b) ̸= 0; then ι∗(b) ̸= 0, and R < FillRadk(M).
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Chapter 3

On the reach of isometric embeddings of
metric spaces

Recall that, as we explained in Section 1.6, the reach of a subset measures how much the subset
folds in on itself (i.e., how close apart two pieces of the set are in the ambient space despite
them being far in the intrinsic metric of the set).

For the clarity of this chapter, we recall the definition of the set of unique points and reach
of a subset:

Definition 28 (Unique points set and reach, [32]). Let (X, dist) be a metric space and A ⊂ X
a subset. We define the set of points having a unique metric projection in A as

Unp(A) = {x ∈ X : there exists a unique a such that dist(x,A) = dist(x, a)}.

For a ∈ A, we define the reach of A at a, denoted by reach(a,A), as

reach(a,A) = sup{r ≥ 0 : Br(a) ⊂ Unp(A)}.

Finally, we define the global reach by

reach(A) = inf
a∈A

reach(a,A).

In this chapter, we study the value of the reach of four isometric embeddings: that of the
Kuratowski embedding, and into three Wasserstein-type spaces (canonical Wassertein, Orlicz–
Wassertein and the space of persistence diagrams). All these results appear in the following
articles: Manuel Cuerno and Luis Guijarro. “Upper and lower bounds on the filling radius”.
In: Indiana Univ. Math. J. (2022). URL: https://arxiv.org/abs/2206.08032.
Forthcoming, Javier Casado, Manuel Cuerno, and Jaime Santos-Rodrı́guez. On the reach of
isometric embeddings into Wasserstein type spaces. 2023. arXiv: 2307.01051.

3.1 Reach of the Kuratowski embedding
The final part of [31] deals with the computation of the reach of the Kuratowski embedding
into L∞(M).
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Theorem 3.1 ([31]). Let Mn be a compact Riemannian manifold. For every p ∈M ,

reach(p,M ⊂ L∞(M)) = 0.

Proof. We need to prove that, given an arbitrary ϵ > 0, and p ∈ M , there is some function
f ∈ Bϵ(p) and a point q ̸= p ∈M such that

dist∞(f,M) = || distp −f ||∞ = || distq −f ||∞. (3.1)

Let 0 < δ << ϵ, and choose q ∈M such that

|| distp− distq ||∞ = distM(p, q) = δ.

Define
f :M → R, f(s) :=

1

2
(distp(s) + distq(s)).

We claim that this function does not belong to the Kuratowski embedding of M : otherwise,
there would be some r ∈M with

f(s) =
1

2
(distp(s) + distq(s)) = distr(s),

and evaluating at s = r, we would obtain that distp(r) = 0 = distq(r), and p, q and r would
all be the same point. Also, f lies in Bϵ(p) since

||f − distp ||∞ = ||1
2
(distp+distq)− distp ||∞ =

1

2
|| distq − distp ||∞ =

δ

2
< ϵ.

Moreover, a similar computation yields that

||f − distq ||∞ =
δ

2
= ||f − distp ||∞.

It only remains to show that there is not any point in M closer to f . So assume that there
were some distr ∈M such that

|| distr −f ||∞ < || distp−f ||∞.

Then
|| distr −f ||∞ < || distp−f ||∞ =

δ

2
.

Evaluating at r, we would obtain

| distr(r)− f(r)| = |f(r)| = 1

2
(distp(r) + distq(r)) <

δ

2
. (3.2)

On the other hand, by the triangle inequality,

distp(r) + distq(r) ≥ distM(p, q) = δ (3.3)

resulting in a contradiction. Thus f satisfies (3.1) and the proof is finished.

All this study of the Kuratowski embedding and the reach led us to some open questions
that we have not solved yet:

Question 1. Is Unp(M ⊂ L∞(M)) dense in L∞(M)?

Question 2. Give a characterization of Unp(M ⊂ L∞(M)).
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3.2 Reach of the Wasserstein space
Before presenting the results concerning the reach in the Wasserstein space, as we are going to
use this concept in the rest of the chapter, we want to introduce the definition of p–barycenter:

Definition 29 (p–barycenter). We define a p–barycenter of a measure µ ∈ Wp(X), where
(X, distX) is a metric space, as a point in X that minimizes the distance between µ and some
isometric embedding of the metric space inside that space, in particular, the canonical embed-
ding that sends x 7→ δx.

Remark. As we are going to deal with other Wasserstein type spaces, we will naturally extend
the definition of p–barycenter in each context.

The first open question for the Unp set of the Kuratowski embedding deals with the density
of this subset. We have solved this question in the canonical Wasserstein space case: The set
of unique points of the isometric embedding of a metric space into its p–Wasserstein space is
dense in the total space:

Proposition 3.1 ([24]). Let (X, dist) be a non-branching metric space and Wp(X) with p > 1
its p–Wasserstein space. Then the set of unique points Unp(X ⊂ Wp(X)) is dense in Wp(X).

Proof. Let µ ∈ Wp(X) be a measure with a barycenter x ∈ X . Take ν inside a geodesic
between δx and µ. Suppose that there exists some other point z ∈ X that is a barycenter for ν.
This implies that Wp(ν, δz) ≤ Wp(ν, δx) and with this we get

Wp(µ, δz) ≤ Wp(µ, ν) +Wp(ν, δz) ≤ Wp(µ, ν) +Wp(ν, δx) = Wp(µ, δx).

Hence z is also a barycenter for µ. Furthermore, we notice that there is a branching geodesic
joining µ with δz as at some point it branches at ν in order to also join µ and δx. This gives
us the contradiction as Wp(X) is non-branching. Then ν is a measure in Unp(X ⊂ Wp(X))
which can be taken arbitrarily close to µ.

As Unp(X ⊂ Wp(X)) is dense in Wp(X), a natural question about the positivity of the
reach in this context seems natural: Is there any metric space (X, distX) with

reach(x,X ⊂ Wp(X)) > 0

for all x ∈ X?

3.2.1 Null reach
The first result concerning the reach and the Wasserstein space is that the reach of a metric
space inside its 1–Wasserstein space is always 0. The proof follows the idea of the proof of
Theorem 3.1.

Theorem 3.2 ([24]). Let (X, dist) be a metric space, and consider its 1–Wasserstein space,
W1(X). Then, for every accumulation point x ∈ X ,

reach(x,X ⊂ W1(X)) = 0.

In particular, if X is not discrete, reach(X ⊂ W1(X)) = 0.
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Proof. We are going to follow the same spirit as in the proof of Theorem 3.1.
Let ϵ > 0. We will show that inside Bϵ(x) ⊂ W1(X) there exists at least one measure

µ /∈ Unp(X).
By hypothesis, there exists y ∈ X , y ̸= x, such that d(x, y) < ϵ. Then

µ :=
1

2
δx +

1

2
δy.

First, notice that µ ̸= δz for any z ∈ X because the support of µ is different from the support
of any of the δz ∈ X . In addition, due to the triangle inequality,

W1(δa, µ) =
1

2
dist(a, x) +

1

2
dist(a, y) ≥ 1

2
dist(x, y). (3.4)

By inequality (3.4) above, we can clearly see that µ ∈ Bϵ(x), because

W1(δx, µ) =
1

2
dist(x, y) < ϵ.

Finally, we observe that both a = x and a = y minimize the distance to µ. Therefore,
µ /∈ Unp(X) and reach(x,X ⊂ W1(X)) = 0.

Note that the hypothesis of the point being an accumulation point is necessary, because, if
x0 ∈ X is an isolated point, then the quantity ℓ = infx∈X dist(x, x0) is strictly positive, and
Bℓ/2(x) admits a unique metric projection to X as every p ∈ Bℓ/2(x) is closer to x than any
other point of X .

Remark. The accumulation point argument in the above proof can also be used in Theorem 3.1,
so we can restate that theorem for accumulation points of compact metric spaces. Moreover, if
the space is not discrete, the result holds for every point.

An interesting observation is that, combining the same argument in the proof of Theorem
3.2 with the previous remark, if X is a discrete metric space isometrically embedded into
another metric space Y , then

reach(X ⊂ Y ) = inf
x1 ̸=x2

dist(x1, x2)/2 > 0.

Now we will provide results about the reach of a geodesic metric space inside its p–
Wasserstein space with p > 1. We have found that these results are closely related to the
uniqueness of the geodesics. This next proposition has important consequences about the reach
inside a Wasserstein space, as it constructs measures with possibly several projections in X .

Proposition 3.2 ([24]). Let (X, dist) be a geodesic metric space, and x, y ∈ X two points with
x ̸= y. Consider the probability measure

µ = λδx + (1− λ)δy,

for 0 < λ < 1. Then µ minimizes its p–Wasserstein distance to X exactly once for every
minimizing geodesic between x and y.
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Proof. The proof is structured in the following way: First, we choose a candidate for the
distance–minimizer of µ, supposing it lies inside a minimizing geodesic. Then, we show that
the global minimum distance can only be achieved inside a minimizing geodesic.

Choose γ(t) : [0, 1] → X a minimizing geodesic from x to y. We can compute the cost
W p

p (δγ(t), µ) and then minimize in t. Indeed,

W p
p (δγ(t), µ) = λ dist(γ(t), x)p + (1− λ) dist(γ(t), y)p

= (λtp + (1− λ)(1− t)p) dist(x, y)p
. (3.5)

The minimum will be achieved at the parameter t0 which verifies

d

dt

∣∣∣∣
t=t0

W p
p (δγ(t), µ) = 0.

We know this because that derivative is negative for t = 0, and positive for t = 1, and vanishes
at only one point t = t0. An easy computation shows us that the only solution in our interval is

t0 =
(1− λ)p−1

λp−1 + (1− λ)p−1
.

Thus, the Wasserstein distance between µ and this geodesic minimum is

W p
p (δγ(t0), µ) =

λ(1− λ)(p−1)p + (1− λ)λ(p−1)p

(λp−1 + (1− λ)p−1)p
· distp(x, y).

Observe that this value is independent from the minimizing geodesic γ of our choice.
Finally, we only have to prove that the minimum can only be achieved inside a minimizing

geodesic. For that purpose, we will choose any a ∈ X , and we will construct another point a′

inside a minimizing geodesic segment γ verifying W p
p (δa, µ) ≥ W p

p (δa′ , µ).
The case dist(a, y) ≥ dist(x, y) is straightforward, as choosing a′ = x we have

W p
p (δa, µ) = λ dist(a, x)p + (1− λ) dist(a, y)p

≥ (1− λ) dist(a, y)p

≥ (1− λ) dist(x, y)p = W p
p (δx, µ).

Now, if dist(a, y) < dist(x, y), we can pick a′ inside γ at distance dist(a, y) to y. Observe
that dist(a, x) ≥ dist(a′, x) or γ would not be minimizing. Then

W p
p (δa, µ) = λ dist(a, x)p + (1− λ) dist(a, y)p

= λ dist(a, x)p + (1− λ) dist(a′, y)p

≥ λ dist(a′, x)p + (1− λ) dist(a′, y)p = W p
p (δa′ , µ).

Therefore, the minimum can only be achieved inside minimizing geodesics between x and y
and our proof is complete.

Now, we will apply the preceding proposition to construct measures with multiple projec-
tions close to any point in X . We will use this to derive sufficient conditions for attaining
reach(p,X) = 0 for all p ∈ X .
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Theorem 3.3 ([24]). LetX be a geodesic metric space, and x ∈ X a point such that there exists
another y ∈ X with the property that there exist at least two different minimizing geodesics
from x to y. Then, for every p > 1,

reach(x,X ⊂ Wp(X)) = 0.

In particular, if there exists a point x ∈ X satisfying that property,

reach(X ⊂ Wp(X)) = 0

for every p > 1.

Proof. The probability measure µλ = λδx + (1 − λ)δy will have at least two different points
minimizing its distance to X by proposition 3.2.

Now simply observe that W p
p (µλ, δx) = (1 − λ) dist(x, y)p, which decreases to 0 when

λ → 1. Hence reach(x,X) = 0 for every x ∈ X satisfying that property, and therefore
reach(X ⊂ Wp(X)) = 0.

When X is a Riemannian manifold, some common hypotheses will grant us reach 0. For
example, a classic result by Berger (see for example [22, Chapter 13, Lemma 4.1]) proves that
our theorem can be applied whenX is compact. In this case, for any p ∈ X , there always exists
another q ∈ X such that there exist two minimizing geodesics starting at p to q. More precisely,
for every p ∈ X we can choose a maximum q of the function dist(p, ·) and there will be at least
two minimal geodesics from p to q. There is a similar result in [35], where it is shown that for
every p, there exists q ∈ X such that p and q are joined by several minimizing geodesics.

Corollary 3.3.1 ([24]). If M is a compact Riemannian manifold, then

reach(x,M ⊂ Wp(M)) = 0

for every p > 1 and x ∈M .

Also, we can apply our Theorem 3.3 to the non simply connected case:

Corollary 3.3.2 ([24]). IfM is a complete Riemannian manifolds with non–trivial fundamental
group (i.e. not simply connected), then

reach(x,M ⊂ Wp(M)) = 0

for every p > 1 and x ∈M .

Proof. Consider the universal cover π : M̃ → M . Let x ∈ M , and let x̃ be a point with
π(x̃) = x. Denote byG the fundamental group ofM . We know thatG acts on M̃ by isometries
and that Gx̃ is a discrete, locally finite set. Then, we may take x̃′ ∈ Gx̃ at minimal distance
from x̃.

Then we can take a minimizing geodesic γ̃ : [0, ℓ] → M̃ from x̃ to x̃′, and the projection
γ = π ◦ γ̃ will be a geodesic loop such that γ(0) = γ(ℓ) = x, and γ is globally minimizing on
[0, ℓ/2] and [ℓ/2, ℓ]. Otherwise, by taking a shorter curve to the midpoint γ(ℓ/2) and lifting it
we could construct a shorter geodesic from x̃ to another point in Gx̃ and our two points would
not be at minimal distance.

Both corollaries can be generalized as follows:

Corollary 3.3.3 ([24]). If a proper geodesic space X is not contractible, then

reach(x,X ⊂ Wp(X)) = 0

for every p > 1 and x ∈ X .
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3.2.2 Infinite reach
In this subsection, we are going to use definitions of Section 1.3 and results of [57] that we
recall here for the readability of the following proofs:

Lemma 3.1 (Lemma 1.4, [57]). A uniformly p–convex metric space (X, dist) is uniformly q–
convex for all q ≥ p.

Theorem 3.4 (Theorem 4.4, [57]). On any p–convex, reflexive metric space (X, dist) every
measure p–moment has p–barycenter.

Corollary 3.4.1 (Corollary 4.5, [57]). Let (X, dist) be a metric space with the same hypotheses
as in Theorem 3.4. In addition, let p ∈ [1,∞] and (X, dist) be strictly p–convex if p ∈ [1,∞)
and uniformly ∞–convex if p = ∞. Then p–barycenters are unique for p > 1. In case p = 1,
all measures admitting 1–barycenters which are not supported on a single geodesic have a
unique 1–barycenter.

Now, we present our results about infinite reach of the canonical isometric embedding into
the Wasserstein space:

Theorem 3.5 ([24]). Let (X, dist) be a reflexive metric space. Then the following assertions
hold:

1. If X is strictly p–convex for p ∈ [1,∞) or uniformly ∞–convex if p = ∞, then

reach(X ⊂ Wr(X)) = ∞, for r > 1. (3.6)

2. If X is Busemann, strictly p–convex for some p ∈ [1,∞] and uniformly q–convex for
some q ∈ [1,∞], then

reach(X ⊂ Wr(X)) = ∞, for r > 1. (3.7)

Proof. In Theorem 3.4, Kell establishes that any p-convex and reflexive metric space possesses
p-barycenters, as he defined them in [57, Definition 4.3.]. His Theorem 4.4 establishes the
existence of such barycenters but not uniqueness. To establish it, we require the conditions
we stated in both cases of our theorem. Now we present how these restrictions give us infinite
reach.

1. Following Corollary 3.4.1, the spaces (X, dist) which satisfy the hypotheses in item (1)
of the theorem have unique r–barycenters for r > 1. In other words, every µ ∈ Wr(X)
has a unique barycenter. This finishes the proof of the first assertion of the theorem.

2. Following Lemma 3.1, if (X, dist) is strictly (resp. uniformly) p–convex for some p, then
it is strictly (resp. uniformly) p–convex for all p. Hence, we are in case (1).

As we pointed out in Section 1.2.2, CAT(0)–spaces are a well-known example of metric
spaces satisfying some of the hypotheses in Theorem 3.5. In that sense, there is a straightfor-
ward corollary to our Theorem 3.5 in terms of CAT(0)–spaces:
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Corollary 3.5.1. Let (X, dist) be a reflexive CAT(0)-space, then

reach(X ⊂ Wp(X)) = ∞, for p > 1.

Proof. As Kell stated in [57], CAT(0)-spaces are both Busemann spaces and uniformly p–
convex for every p ∈ [1,∞]. Let (X, dist) be a reflexive CAT(0)-space and x, y, z ∈ X . From
the definition of CAT(0)-spaces, we have that

dist(m(x, y), z) ≤ distEn(m(x′, y′), z′)

1

2
(distEn(x′, z′) + distEn(y′, z′)) =

1

2
(dist(x, z) + dist(y, z)) ,

where m(x, z) denotes de midpoint between x and z.
Hence, CAT(0)–spaces are strictly 1–convex and, by [57, Lemma 1.4] they are strictly

p–convex for all p. The conclusion now follows from item (2) in Theorem 3.5.

As particular cases of CAT(0)-spaces, we have Hadamard manifolds (complete, simply
connected Riemannian manifolds with non-positive sectional curvature everywhere) and, in
particular, Euclidean n–space. So, as a corollary, we obtain the following:

Corollary 3.5.2 ([24]). Let (Mn, g) be a Hadamard manifold. Then

reach(Mn ⊂ Wp(M
n)) = ∞, for p > 1.

In particular,
reach(En ⊂ Wp(En)) = ∞, for p > 1,

where En is the Euclidean n–space.
In other words, let (Mn, g) be a Hadamard manifold, then any measure µ ∈ Wp(M) has a

unique p–barycenter for p > 1.

Other authors have considered the existence of barycenters in the CAT(κ)–space context,
specifically κ = 0. In [83, Proposition 4.3.], Sturm proved the existence and uniqueness of
barycenters for CAT(0)–spaces only for the 2–Wasserstein space. In [95, Theorem B], Yokota
stated a condition on CAT(κ)–spaces, with κ > 0, to have unique barycenters. This condition
is related to the size of the diameter of the CAT(κ)–space, which needs to be small in order to
have unique barycenters.

Regarding this study of the reach into the Wasserstein space, we have some open questions
we state here:

Question 3. Is there any space X whose reach(X ⊂ Wp(X)) > 0 when p > 1?

Question 4. Let (Mn, g) be a manifold without conjugate points, what is the value of

reach(M ⊂ Wp(M))

for p > 1?
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3.2.3 Projection map
As we have pointed out several times, the reach has a close relation to the metric projection of
points of the space onto the image of the embedding. We have studied the regularity of those
projection maps in the case of the Wasserstein space.

We define the projection map as

projp : Wp(X) → X

µ 7→ rµ,

that sends each measure to its p−barycenter (i.e. the barycenter on the p–Wasserstein space).
Recall that this map is defined in the whole Wp(X) if reach(, xX ⊂ Wp(X)) = ∞, for all
x ∈ X , i. e. each measure µ has a unique p–barycenter.

We briefly recall Kuwae’s property B, (see Section 4.3 in [57] and references therein). Take
two geodesics γ, η such that they intersect at an unique point p0. Assume that for all points
z ∈ γ[0, 1] the minimum of the map t 7→ ∥z − ηt∥ is achieved only by the point p0. Then for
every point w ∈ η[0, 1] the minimum of the map t 7→ ∥w − γt∥ is achieved only by p0.

Theorem 3.6 ([24]). Let (X, ∥ · ∥) be a reflexive Banach space equipped with a strictly convex
norm and satisfying property B. Then proj2 is a submetry.

Proof. First let us make a couple observations. From the strict convexity of the norm it follows
that between any two points x, y ∈ X there is a unique geodesic joining them, more precisely,
the curve [0, 1] ∋ t 7→ (1− t)x+ ty. In particular this tells us that m(x, y) = 1

2
x+ 1

2
y.

Let p > 1 and x, y, z ∈ X . Due to that for every two real numbers a, b ∈ R we have that

|a+ b|p ≤ 2p−1(|a|p + |b|p),

we obtain that

∥m(x, y)− z∥p = ∥1
2
x+

1

2
y − z∥p

< 2p−1

(
∥1
2
(x− z)∥p + ∥1

2
(y − z)∥p

)
= 2p−1

(
1

2p
∥x− z∥p + 1

2p
∥y − z∥p

)
=

1

2
∥x− z∥p + 1

2
∥y − z∥p

Hence (X, ∥ · ∥) is strictly p−convex and so it satisfies the conditions of Theorem 3.5, where
this barycenters exist and are unique. Therefore the projection map proj2 is well defined.

Now notice that

∥m(x, y)−m(y, z)∥ = ∥1
2
(x+ z)− 1

2
(y + z)∥

=
1

2
∥x− y∥,
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which implies that for p > 1

∥m(x, y)−m(y, z)∥p < 1

2
∥x− y∥p,

i.e., it is p−Busemann. Then the 2−Jensen inequality (see Section 4.3 in [57]) holds and so in
addition we have that by Proposition 4.8 in [57] proj2 is 1−Lipschitz. Let Br(µ) be a ball in
the Wasserstein space. We just proved that

proj2(Br(µ)) ⊂ Br(proj2(µ)).

Then, it suffices to see that every point in Br(proj2(µ)) is the image of a point (the barycenter
of a measure) in Br(µ). Fix µ, r ≥ 0 and let b ∈ Br(proj2(µ)). Let T be the translation from
proj2(µ) to b. Let us show that T#µ has b as a barycenter. For any a ∈ X ,

W 2
2 (T#µ, δT (a)) =

∫
X

∥x− T (a)∥2 d(T#µ)(x)

=

∫
X

∥T (x)− T (a)∥2 dµ(x)

=

∫
X

∥x− a∥2 dµ(x) = W 2
2 (µ, δa).

Hence, if a = proj2(µ), then a minimizes the distance from X to µ, and then T (a) = b
minimizes the distance to T#µ.

It remains to see that T#µ is contained in Br(µ). Choosing (Id, T )#µ as a transport plan in
Π(µ, T#µ),

W 2
2 (µ, T#µ) = inf

π∈Π(µ,T#µ)

∫
X×X

∥x− y∥2 dπ(x, y)

≤
∫
X

∥x− T (x)∥2 dµ(x) = ∥ proj2(µ)− b∥2 < r2.

Therefore, T#µ ∈ Br(µ).

Examples of spaces satisfying the assumptions of Theorem 3.6 include Hilbert spaces and
Lp spaces (see Examples 4.5, and 4.6 in [59]).

3.3 Reach in the Orlicz–Wasserstein space
As in the previous case, we split the study of the reach in the Orlicz–Wasserstein space (Section
1.5.2) into two parts:

3.3.1 Null reach
We start this section with a simple remark.

Remark. Let φ ≡ Id. Observe that ψ ◦dist is a distance when ψ is a positive concave function
with ψ(0) = 0. Then Wϑ is a 1-Wasserstein distance for the metric space (X,ψ ◦ dist).
Therefore,

reach(x,X ⊂ Wϑ(X)) = 0

whenever x ∈ X is an accumulation point, by Theorem 3.2.
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Now, for general φ holding the isometric embedding restriction (recall Section 1.5.2), we
can replicate Proposition 3.2 for the case where X is isometrically embedded into an Orlicz–
Wasserstein space using a more delicate argument.

Proposition 3.3 ([24]). Let X be a geodesic metric space, and let x, y ∈ X be two points with
x ̸= y. Consider the probability measure

µ = λδx + (1− λ)δy,

for 0 < λ < 1. Then, the following assertions hold:

1. µ can only minimize its ϑ–Wasserstein distance to X inside a minimizing geodesic be-
tween x and y (i. e. the minimizer lies inside a minimum).

2. If λ is close to one, and there exists a constant c > 1 such that φ−1(t) < t for every t > c,
then the minimum will be attained inside the interior of each geodesic.

Proof. First we will see that the minimum can only be attained inside a geodesic. For that
purpose, we will replicate the argument in the proof of Proposition 3.2. That is, given a ∈ X ,
we construct a′ ∈ γ([0, ℓ]), where γ is a minimizing geodesic, with

Wϑ(δa, µ) > Wϑ(δa′ , µ).

Again, it suffices to consider the case dist(a, y) ≤ dist(x, y). We can pick a′ ∈ γ([0, ℓ]) such
that dist(a′, y) = dist(a, y). Then, dist(a′, x) < dist(a, x) or a is also inside a minimizing
geodesic.

Let

S =

{
t > 0 : λφ

(
1

t
dist(a, x)

)
+ (1− λ)φ

(
1

t
dist(a, y)

)
≤ 1

}
.

As we have only one transport plan π = δa ⊗ µ, we can write

Wϑ(δa, µ) = inf S.

Thus, it is enough to see that, if t0 verifies the inequality inside that infimum for a, then it will
verify it for a′. Indeed,

1 ≥ λφ

(
1

t0
dist(a, x)

)
+ (1− λ)φ

(
1

t0
dist(a, y)

)
= λφ

(
1

t0
dist(a, x)

)
+ (1− λ)φ

(
1

t0
dist(a′, y)

)
> λφ

(
1

t0
dist(a′, x)

)
+ (1− λ)φ

(
1

t0
dist(a′, y)

)
.

The last inequality comes from the monotonicity of φ, and the assumption

dist(a′, x) < dist(a, x).

Observe that, because the previous inequality is strict, we will have a strict inequality in
Wϑ(δa, µ) > Wϑ(δa′ , µ).
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Now we will prove the second part of our proposition. Assuming λ close to 1, and that φ
differs from the identity for big enough values, we will see that there are points a ∈ γ((0, ℓ))
with

Wϑ(δa, µ) ≤ min{Wϑ(δx, µ),Wϑ(δy, µ)}. (3.8)

First, we observe that the right-hand side in inequality 3.8 above is easy to compute. Using
that φ−1 is an increasing function,

Wϑ(δx, µ) = inf

{
t > 0 : (1− λ)φ

(
1

t
dist(x, y)

)
≤ 1

}
= inf

{
t > 0 : φ

(
1

t
dist(x, y)

)
≤ 1

1− λ

}
= inf

{
t > 0 :

1

t
≤
φ−1

(
1

1−λ

)
dist(x, y)

}

= inf

{
t > 0 :

dist(x, y)

φ−1
(

1
1−λ

) ≤ t

}

=
dist(x, y)

φ−1
(

1
1−λ

) .
Similarly, Wϑ(δy, µ) =

dist(x, y)

φ−1 (1/λ)
. If we want λ close to one, we can suppose λ > 1 − λ.

Therefore, 1/(1− λ) > 1/λ, and because φ−1 is increasing,

φ−1 (1/(1− λ)) > φ−1 (1/λ) .

Thus, we know that

t0 := min{Wϑ(δx, µ),Wϑ(δy, µ)} =
dist(x, y)

φ−1
(

1
1−λ

) .
Now, we will show that we can find a point inside the geodesic a = γ(s), s ∈ (0, ℓ) verifying
inequality (3.8). It suffices to see that t0 ∈ S, because Wϑ(δa, µ) is the infimum of S and by
definition will be smaller. First, observe that, by monotonicity of φ−1, the inequality defining
S is equivalent to

φ−1

(
λφ

(
1

t
dist(a, x)

)
+ (1− λ)φ

(
1

t
dist(a, y)

))
≤ φ−1(1) = 1.

By the concavity of φ−1, it is enough to have

λ
1

t
dist(a, x) + (1− λ)

1

t
dist(a, y) ≤ 1.

We will evaluate t = t0 and look for a condition on s so the preceding inequality is verified.
Observe that dist(a, x) = s, dist(a, y) = ℓ− s and dist(x, y) = ℓ. Then
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λ
1

t0
dist(a, x) + (1− λ)

1

t0
dist(a, y) ≤ 1 ⇐⇒ λ

s

ℓ
· φ−1(1/(1− λ))

⇐⇒ + (1− λ)
ℓ− s

ℓ
· φ−1(1/(1− λ)) ≤ 1

⇐⇒ λs

ℓ
+
ℓ− s

ℓ
− λ · ℓ− s

ℓ
≤ 1

φ−1(1/(1− λ))

⇐⇒ s · (2λ− 1) ≤ ℓ

(
1

φ−1(1/(1− λ))
+ 1− λ

)

⇐⇒ s ≤

(
ℓ 1
φ−1(1/(1−λ))

− (1− λ)
)

2λ− 1
.

If we show that our bound for s is strictly positive, the minimum will be attained inside the
geodesic and we will finish the proof. Choosing λ close enough to 1, we have (2λ−1) > 0 and
1/(1− λ) > c. Therefore, φ−1(1/(1− λ))− 1/(1− λ) < 0 and, because the function t 7→ 1/t
is decreasing,

1

φ−1(1/(1− λ))
− (1− λ) > 0

and we have finished our proof.

An immediate consequence of our proposition is the following theorem, providing us with
examples of manifolds with zero reach inside their Orlicz–Wasserstein space:

Theorem 3.7 ([24]). LetX be a geodesic metric space, and x ∈ X a point such that there exists
another y ∈ X with the property that there exist at least two different minimizing geodesics
from x to y. Suppose X is isometrically embedded into an Orlicz-Wasserstein space Wϑ(X).
Then, for every φ such that φ(t0) ̸= t0 for some t0 > 1,

reach(x,X ⊂ Wϑ(X)) = 0.

In particular, if there exists a point x ∈ X satisfying that property, then

reach(X ⊂ Wϑ(X)) = 0

for every p > 1. Also, for compact manifolds and non-simply connected manifolds,

reach(x,X ⊂ Wϑ(X)) = 0

for every x ∈ X .

Proof. The proof is identical to the one from Theorem 3.3. It remains to see that φ(t0) ̸= t0
implies the condition we ask for in Proposition 3.3. Indeed, the convexity and φ(1) = 1 imply
φ(t) > t for every t > t0. And, because φ−1 is increasing, we also have t > φ−1(t) for every
t > t0, which is what we need to apply Proposition 3.3.
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3.3.2 Positive Reach
Similarly to the p–Wasserstein case, using results of Kell [57], we can prove that reflexive
CAT(0)–spaces inside some Orlicz–Wasserstein spaces have infinite reach.

Theorem 3.8 ([24]). Let (X, dist) be a reflexive CAT(0)–space. Supposeφ is a convex function
that can be expressed as φ(r) = ψ(rp), where ψ is another convex function and p > 1. Then

reach(X ⊂ Wϑ(X)) = ∞, (3.9)

where ψ ≡ Id and φ(1) = 1.

Proof. As we pointed out in the proof of Corollary 3.5.1, CAT(0)–spaces are strictly p-convex.
Hence by [57, Lemma A.2.] they are strictly Orlicz φ-convex. Thus, the result is derived
directly from [57, Theorem A.4.] which confirms the existence of unique barycenters for every
µ ∈ Wϑ(X).

Remark. All proper metric spaces (i.e., those where every bounded closed set is compact) are
reflexive [47, 57]. Derived for the proof of [14, Proposition 3.7.], symmetric spaces of non–
compact type (i.e. with non-positive sectional curvature and no non-trivial Euclidean factor)
and Euclidean buildings are proper CAT(0) spaces and are examples for which Theorem 3.8
holds (for more information, read the survey about CAT(0)–spaces of Caprace [21]).

As in the Wasserstein space, we have the open question of finding any space with positive
but not infinite reach.

3.4 Reach of the Persistence Diagram Space
Finally, we studied the reach into the third Wasserstein-type space: the space of persistence
diagrams. In [18, Theorem 19], Bubenik and Wagner construct an explicit isometric embedding
(see Figure 3.1) of bounded separable metric spaces into (Dgm∞, w∞).

φ : (X, dist) → (Dgm∞, w∞)

x 7→ {(2c(k − 1), 2ck + dist(x, xk))}∞k=1,

where c > diam(X) = sup{dist(x, y) : x, y ∈ X} and {xk}∞k=1 is a countable, dense subset of
(X, dist). The authors stated that this embedding can be thought of as a shifted version of the
Kuratowski embedding.

Theorem 3.9 ([24]). Let (X, dist) be a separable, bounded metric space and (Dgm∞, w∞) the
space of persistence diagrams with the bottleneck distance. If x ∈ X is an accumulation point,
then

reach(x,X ⊂ Dgm∞) = 0.

In particular, if X is not discrete, reach(X ⊂ Dgm∞) = 0.

Proof. For every two points x, y ∈ X , we can construct a persistence diagram P with at least
those two points minimizing the bottleneck distance from the diagram P to the embedded space
φ(X). That P will be a midpoint between φ(x) and φ(y), so by choosing y arbitrarily close
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Figure 3.1: Bubenik’s embedding of a triangle

to x, we will have a diagram with several barycenters (x and y) that is also arbitrarily close
to x. Therefore, reach(x,X ⊂ Dgm∞) = 0 for every accumulation point x ∈ X , and, thus,
reach(X ⊂ Dgm∞) = 0.

Then, it suffices to prove our first claim. For x, y ∈ X , choose the diagram

P =

{(
2c(k − 1), 2ck +

dist(x, xk) + dist(y, xk)

2

)}∞

k=1

.

Now, observe that

w∞(φ(x), P ) = sup
k∈N

∣∣∣∣dist(x, xk)− dist(y, xk) + dist(x, xk)

2

∣∣∣∣
= sup

k∈N

| dist(x, xk)− dist(y, xk)|
2

=
1

2
w∞(φ(x), φ(y)) =

dist(x, y)

2
.

And, by a symmetric argument,

w∞(φ(y), P ) =
dist(x, y)

2
.

Note that, similarly to the end of the proof of [18, Theorem 19], any other pairing between
points of the diagrams would pair two points from different vertical lines. Those points would
be at distance at least 2c. On the other hand, any possibly unpaired points are at distance at
least c from the diagonal. So those pairings would have a cost bigger than c > dist(x, y)/2,
and therefore we always pair points in the same vertical lines.

Now, if z ∈ X , we will see that P is at distance at least 1
2
dist(x, y) from z. Indeed, we can

give a lower bound for the distance simply by omitting the supremum:

w∞(φ(z), P ) = sup
k∈N

∣∣∣∣dist(z, xk)− dist(x, xk) + dist(y, xk)

2

∣∣∣∣
≥
∣∣∣∣dist(z, xk)− dist(x, xk) + dist(y, xk)

2

∣∣∣∣ .
Looking at xk arbitrarily close to z, we get that

w∞(φ(z), P ) ≥
∣∣∣∣dist(x, z) + dist(y, z)

2

∣∣∣∣ ≥ dist(x, y)

2
.

This proves that P is not in the image of φ, and that φ(x), φ(y) both minimize the distance
from P to φ(X), as we wanted to see.
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Chapter 4

The Rival Coffee Shop Problem

In this final chapter, we present some results concerning the Coffee Shop Problem but with
a novel constraint on it: competition. This chapter is based on the paper: Javier Casado and
Manuel Cuerno. The Rival Coffee Shop Problem. 2023. arXiv: 2304.04535.

Firstly, we present a brief introduction concerning the problem and some of the literature
related to our approach.

4.1 The Coffee Shop Problem
Let X be a certain region (e.g., a segment, a square, a torus, or any manifold) and {xi} be a
sequence of coffee shops. How can we arrange the coffee shops on X consecutively so that,
for any n ∈ N, the set {xi}ni=1 is placed in the optimal way? This problem, which the reader
may know by another name (such as the supermarket or clothing shop problem), is known as
the Coffee Shop Problem.

Note that this question differs from the problem of finding the optimal arrangement of N
shops. To illustrate this, suppose that X = [0, 1]× [0, 1] and N = 4. If we want to arrange four
coffee shops in the optimal way, it seems that dividing X into four squares and placing a coffee
shop at the center of each square (see Figure 4.1) would satisfy our condition.

x3

x1

x4

x2

Figure 4.1: Four Coffee shops in the optimal settlement

Whereas, if we follow the original statement of the coffee shop problem, the final configu-
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ration for N = 4 would be quite different from Figure 4.1. Let {xn} be an infinite sequence of
coffee shops and consider the case N = 4. To obtain an optimal solution, we must place the
first three coffee shops in an optimal way one by one, before placing the fourth one. That is,
we first place the first coffee shop in the optimal way, and then, with x1 fixed, we place x2 in
such a way that x1 and x2 are placed in the optimal way, continuing this process until the fourth
coffee shop is placed. At each step, the locations of the previous coffee shops (i.e., those with
indices n0 < N ) are fixed and must be optimal, not just the final configuration at step N = 4.

This explanation shows that Figure 4.1 does not correspond to a solution of the coffee shop
problem. For example, based on Figure 4.1 but following the coffee shop problem, if we fix
N = 3, the settlement seems far from optimal (Figure 4.2). Similarly, for N = 1, Figure 4.2
shows a suboptimal solution. On the other hand, Figure 4.3 seems to provide a better solution
to the coffee shop problem when N = 4.

x3

x1x1 x2

Figure 4.2: On the left: one coffee shop with the setup of Figure 4.1. On the right: three coffee
shops with the setup of Figure 4.1

x1 x1

x2

x3
x4

Figure 4.3: On the left: the settlement of the first coffee shop. On the right: a settlement for
four coffee shops that seems to fit better the coffee shop problem than Figure 4.1

Let {xi} ⊂ X be a sequence of points, and suppose we wish to study the optimality of its
position if we cut the sequence at step N . This is where the coffee comes in: in real life, if we
plan to open an indefinite number of coffee shops, we will not open all of them simultaneously.
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Rather, we would start by opening one in the optimal location (such as in the center of a square,
as shown in Figure 4.3). If the business is successful, we would then open a second shop, and
so on.

4.1.1 State of the art
The Coffee Shop Problem belongs to a extended tradition of localization and optimization
problems. As we have pointed at the beginning of the introduction, it can be rephrased with
other stores or even different statements, e. g. some optimization problem related to some
amount of commodity and warehouses.

Many of these problems can be understood as a way to approximate a uniform distribution
by a finite discrete set of points. A theoretical approach to this question is the one developed by
the geometric discrepancy theory and the interested reader can find more about that perspective
in this survey [11]. We also present here more references related this interesting research field
[12, 73, 84, 85, 86].

Optimal transport has shown its power to solve many different problems in a vast number
of applied scenarios [80, 92]. The Coffee Shop Problem as well as other location, optimization
and transportation problems has been also understood in the Wasserstein space context as it is
shown by Brown and Steinerberger in [15, 16, 81]. Finally, we want to highlight that, from
the probability theory perspective, some work has also been developed and we show here some
references in order to seek more information [5, 13, 87].

Following Steinerberger and Brown’s work, they understood the Coffee Shop Problem as a
way to minimize the following distance:

W2

(
N∑
i=1

1

N
δxi
, dx

)
, (4.1)

where W2 denotes the 2–Wasserstein distance, dx is the Riemannian volume measure of our
space, normalized with dx(X) = 1, {xi} ⊂ X is a subset and δxi

denotes the Dirac measure at
xi and represents each Coffee Shop.

In terms of this 2–Wasserstein setting, the Coffe Shop Problem can be reformulated in terms
of the following: let {x1, . . . , xN−1} ∈ X , lets find xN ∈ X such that

W2

(
1

N

N∑
i=1

δxi
, dx

)
= min

xN∈X
W2

(
1

N

N−1∑
i=1

δxi
+

1

N
δXN

, dx

)
.

In [81], Steinerberger uses the heat kernel and the Green function to obtain the following
result, which will be crucial for the rest of our chapter. Note that he does not fix any particular
sequence.

Theorem 4.1 (Steinerberger, [81, Theorem 1]). Let X be a smooth, compact d–dimensional
manifold without boundary, d ≥ 3, and let G : X ×X → R ∪ {∞} denote the Green function
of the Laplacian normalized to have average value 0 over the manifold. Then, for any set of N
points {x1, ..., xN} ⊂ X , we have

W2

(
N∑
i=1

1

N
δxi
, dx

)
≲X

1

N1/d
+

1

N

∣∣∣∣∣∑
k ̸=l

G(xk, xl)

∣∣∣∣∣
1/2

. (4.2)
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If the manifold is two–dimensional, d = 2, we obtain

W2

(
N∑
i=1

1

N
δxi
, dx

)
≲X

√
logN

N1/2
+

1

N

∣∣∣∣∣∑
k ̸=l

G(xk, xl)

∣∣∣∣∣
1/2

. (4.3)

Remark. The notation ≲X has the same meaning as ≤, but with a constant on the right-hand
side that depends only on the manifold X . This constant is partly explained by Steinerberger
in [81, Section 3], but the reader can also consult [6] and [61].

After Theorem 4.1, in [16] Brown and Steinerberger presented the following theorems:

Theorem 4.2 (Brown & Steinerberger, [16, Theorem 1]). Let the even function f : T → R
satisfy f̂(k) ≥ c|k|−2 for some fixed constant c > 0 and all k ̸= 0. Define a sequence via

xn = argmin
x

n−1∑
k=1

f(x− xk).

Then this sequence satisfies

W2

(
1

n

n∑
k=1

δk, dx

)
≲

1

n1/2
,

where the implicit constant depends only on the initial set, f(0) and c.

Theorem 4.3 (Brown & Steinerberger, [16, Theorem 3]). Let xn be a sequence obtained as in
(4.5) on an d–dimensional compact manifold. Then

W2

(
1

n

n∑
k=1

δxk
, dx

)
≲M

{
n−1/2

√
log n, if d = 2

n−1/d, if d ≥ 3.

In the preceding theorems, they eliminate the Green term in (4.2) by choosing a greedy
sequence, which optimally places each coffee shop at every iteration. We have explained in
detail this suppression in Section 4.2. In [15], they obtain similar bounds using other sequences,
but this time on the torus.

Theorem 4.4 (Brown & Steinerberger, [15, Theorem 5]). Let d ≥ 2 and let α ∈ Rd be badly
approximable (recall that α = (α1, . . . , αd) ∈ Rd is badly approximable if for all positive
integers q ̸= 0, we have that max1≤j≤d ||αjq|| ≥ c(α)/q1/d, where || · || is the distance to
the nearest integer). Then, the Kronecker sequence (perfectly explained in [15, Section 2.2])
satisfies on the torus

W2

(
1

n

n∑
k=1

δxk
, dx

)
≲c(α),d n

1/d.

In comparison to the original problem, we introduce competition in the region X . This
modification seems natural, as in a city, different coffee brands compete for control over certain
areas.
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4.1.2 Competition
The key idea for this new setting is to compare a new measure µ =

∑N1

i=1 δxi
−
∑N2

j=1 δyj with
dx, so our shops are represented by the positive deltas, and rival shops by the negative ones.
Unlike the problem studied by Steinerberger and Brown, µ is not a probability measure, and in
fact, it is not even positive. We have chosen the Signed Wasserstein distance W1,1

1 introduced
by Piccoli, Rossi, and Tournus in [78] to deal with this new problem. This distance is less
restrictive than the canonical Wasserstein and allows us to work with signed finite measures
like µ. Due to the monotonicity of the 1–Wasserstein distance (as the signed Wasserstein uses
it), we can use Steinerberger and Brown’s results without extra difficulty. Using the signed
Wasserstein distance, we can now compare µ with dx and obtain bounds on their distance,
providing a good setting for our competition problem.

In order to clarify this distance choice we present here two interpretations of the problem
we are studying. It seems that the presence of competition would have to negatively affect our
brand of Coffee Shops, so to the factor

∑N1

i=1 δxi
representing our stores we subtract the rivals∑N2

j=1 δyj . Indeed, we can interpret (4.1) as a way to measure how close is the benefit of our
Coffee Shop placed in {xi} against a benefit produced by placing uniformly stores all around
the region X . In that sense, when we introduce competition in X , we need to subtract to our
benefit the one produced by the rival. Then, it naturally appears a signed measure µ, so the use
of the Signed Wasserstein distance seems accurate to the problem we are dealing with.

Moreover, because W1,1
1 is invariant by translations (see [78, Lemma 19]), we have the

reformulation

W1,1
1

(
N1∑
i=1

δxi
−

N2∑
j=1

δyj , dx

)
= W1,1

1

(
N1∑
i=1

δxi
, dx+

N2∑
j=1

δyj

)
.

Thus our problem is equivalent to the transport of a uniformly distributed population plus a
population localized in the rival shops (that is, dx plus

∑N2

j=1 δyj ) to ours
∑N1

i=1 δxi
.

We want to emphasize that in order to make it more comparable to dx, we have decided to
normalize µ in a certain sense. Specifically, we redefine it as

µ =
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
. (4.4)

A discussion on the choice of the constant has been included in Section 4.4. However, for
the sake of brevity, we note that the constant 1

N1+N2
is the one that best approximates the real

situation we are considering.
In order to develop the new problem (which we will refer to as the “Rival Coffee Shop

Problem”), we have considered two different scenarios: fixed and dynamic competition.

4.2 Fixed competition
As we have pointed out in Section 4.1, we divide our study into two cases. In the first one, the
competition only opens a fixed number N2 > 0 of Coffee Shops. With the distance described
in Section 1.5.1, we want to see how

W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
, dx

)
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behaves for all N1.
Intuitively, when N1 is much bigger than N2, the rival’s influence will be very small. We

can formalize that:

Theorem 4.5 ([23]). Let X be a smooth, compact d–dimensional manifold without boundary,
d ≥ 3, and letG : X×X → R∪{∞} denote the Green’s function of the Laplacian normalized
to have average value 0 over the manifold and N1, N2 > 0. Then, for any distinct sets of points
{x1, . . . , xN1} and {y1, . . . , yN2}, we obtain

W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
, dx

)
≲X,N2

1

(N1 +N2)1/d
+

1

N1 +N2

∣∣∣∣∣∑
k ̸=ℓ

G(zk, zℓ)

∣∣∣∣∣
1/2

,

where W1,1
1 is the signed Wasserstein distance defined in [67] and in Section 1.5.1 and zi = xi

from i = 1 to N1 and zi = yi−N1 for i = N1 + 1 to N1 +N2.

Proof. For the sake of simplicity, we denote

A =
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
and B =

1

N1 +N2

[
N1∑
i=1

δxi
+

N2∑
j=1

δyj

]
.

We can decompose A = A+ − A− with A+ = 1
N1+N2

∑N1

i=1 δxi
and A− = 1

N1+N2

∑N2

j=1 δyj .
Using the definition in 16 we have that

W1,1
1 (A, dx) = W 1,1

1 (A+, dx+ A−) = inf
µ̃,ν̃∈M(X)

|µ̃|=|ν̃|

(|A+ − µ̃|+ |dx+ A− − ν̃|+W1(µ̃, ν̃)) .

Now, we choose µ̃ = B and ν̃ = dx. So, we obtain,

W1,1
1 (A, dx) ≤ (|A+ −B|+ |dx+ A− − dx|+W1(B, dx)) =

=

∣∣∣∣∣ 1

N1 +N2

N2∑
j=1

δyj

∣∣∣∣∣+
∣∣∣∣∣ 1

N1 +N2

N2∑
j=1

δyj

∣∣∣∣∣+W1(B, dx) =

=
2N2

N1 +N2

+W1(B, dx).

Now we will combine the preceding inequality with an upper bound for W1(B, dx) given in
[81, Theorem 1]:

W1(B, dx) ≤ W2(B, dx) ≲X
1

(N1 +N2)1/d
+

1

N1 +N2

∣∣∣∣∣∑
k ̸=ℓ

G(zk, zℓ)

∣∣∣∣∣
1/2

Moreover,
2N2

N1 +N2

+
1

(N1 +N2)1/d
≤ 2N2 + 1

(N1 +N2)1/d
,
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due to N1 +N2 > (N1 +N2)
1/d. Putting everything together, we obtain the desired result:

W1,1
1 (A, dx) ≤ 2N2

N1 +N2

+W1(B, dx) ≲X

≲X
2N2

N1 +N2

+
1

(N1 +N2)1/d
+

1

N1 +N2

∣∣∣∣∣∑
k ̸=ℓ

G(zk, zℓ)

∣∣∣∣∣
1/2

≤

≤ 2N2 + 1

(N1 +N2)1/d
+

1

N1 +N2

∣∣∣∣∣∑
k ̸=ℓ

G(zk, zℓ)

∣∣∣∣∣
1/2

≤

≤ 2N2 + 1

(N1 +N2)1/d
+

2N2 + 1

N1 +N2

∣∣∣∣∣∑
k ̸=ℓ

G(zk, zℓ)

∣∣∣∣∣
1/2

Hence,

W1,1
1 (A, dx) ≲X,N2

1

(N1 +N2)1/d
+

∣∣∣∣∣∑
k ̸=ℓ

G(zk, zℓ)

∣∣∣∣∣
1/2

Corollary 4.5.1 (Casado & C., [23]). The explicit dependence on N2 is

W1,1
1 (A, dx) ≲X

2N2

N1 +N2

+
1

(N1 +N2)1/d
+

1

N1 +N2

∣∣∣∣∣∑
k ̸=ℓ

G(zk, zℓ)

∣∣∣∣∣
1/2

.

Now suppose the sequence zn is defined in the following way:

zn = argmin
x

n−1∑
k=1

K(x, xk) (4.5)

We will say that such sequence is a greedy sequence or that it is defined in a greedy manner.
Here K : X ×X → R are functions of the form

K(x, y) =
∞∑
k=1

ak
ϕk(x)ϕk(y)

λk
,

where ak is assumed to satisfy a two-sided bound c1 < ak < c2 for all k ≥ 1 and ϕk are the
eigenfunctions of the Laplace operator

−∆ϕk = λkϕk.

We could assume ak = 1, in which case we obtain Green’s function.

Theorem 4.6 ([23]). Let zn be a sequence obtained in the previous way on a d–dimensional
compact manifold with d ≥ 3 and let {x1, . . . , xN1} ⊂ {zi}N1+N2

i=1 and {y1, . . . , yN2} ⊂
{zi}N1+N2

i=1 be such that xi ̸= yj for all i, j. Then

W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
, dx

)
≲X,N2

1

(N1 +N2)1/d
.
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Proof. We will use the same notation as in the proof of Theorem 4.5. In this case, we are going
to use another result from Steinerberger together with Brown [16, Theorem 3], which states
that for a sequence zn constructed in a greedy way, we have that

W2

(
1

n

n∑
k=1

δzk , dx

)
≲X

1

n1/d
,

for d ≥ 3. So, in our case,

W1,1
1 (A, dx) ≤ 2N2

N1 +N2

+W1(B, dx) ≤

≤ 2N2

N1 +N2

+
1

(N1 +N2)1/d
,

and we obtain our result

W1,1
1 (A, dx) ≲X,N2

1

(N1 +N2)1/d
, for d ≥ 3.

Proposition 4.1 ([23]). We have a lower bound that is independent of the sets {x1, . . . , xN1}
and {y1, . . . , yN2}. Indeed,

W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
, dx

)
≥ c

(N1 +N2)1/d
− 2N2

N1 +N2

,

where c > 0 is a constant that depends only on the manifold X .

If N2 is fixed and N1 → ∞, this is asymptotically as good as [15, Section 1.2].

Proof. By the triangle inequality, we know that

W1

(
1

N1 +N2

[
N1∑
i=1

δxi
+

N2∑
j=1

δyj

]
, dx

)
≤

≤ W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
, dx

)

+W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
+

N2∑
j=1

δyj

]
,

1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

])
.

We know a lower bound for the first term, and also, because W 1,1
1 is invariant by translations,

W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
+

N2∑
j=1

δyj

]
,

1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

])
=

= W 1,1
1

(
0,

2

N1 +N2

N2∑
j=1

δyj

)
≤

∣∣∣∣∣ 2

N1 +N2

N2∑
j=1

δj

∣∣∣∣∣ = 2N2

N1 +N2

.
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The inequality is obtained by choosing µ̃ = ν̃ = 0 in the infimum inside of W 1,1
1 . Considering

both inequalities and the one that Brown and Steinerberger gave in [15, Section 1.2], we have
that

cd
(N1 +N2)1/d

≤ W1,1
1

(
1

N1 +N2

[
N1∑
i=1

δxi
−

N2∑
j=1

δyj

]
, dx

)
+

2N2

N1 +N2

,

which clearly implies our result.

4.3 Non–fixed competition
In this section, we provide an overview of scenarios where the rival’s growth rate is comparable
to ours. Although there may be a general framework that captures all such cases, we choose to
examine each scenario separately for clarity.

4.3.1 Forbidden areas
Up until this point, we have measured victory solely in terms of the signed Wasserstein dis-
tance between the difference of the sums of the Dirac deltas and the uniform distribution. An
alternative approach is to compute the distance between each individual set of coffee shops and
the uniform distribution, as described in the Steinerberger and Brown papers.

In this section, we consider a scenario where our rival has already opened coffee shops and
“colonized” a certain area, such that we are unable to open our own shops within that region of
our space X . Consequently, our limit as we approach the dx measure will not encompass this
region, whereas our rival’s will.

The key to our proof lies in the following proposition:

Proposition 4.2 ([23]). Suppose {xi} is any sequence in X\Br(p), where Br(p) is an open
ball of center p ∈ X and radius r > 0. Then,

W1

(
1

N

N∑
i=1

δxi
, dx

)
≥ r

2
vol(Br/2(p)),

and in particular 1
N

∑N
i=1 δxi

does not converge to dx.

Proof. Suppose γ is an optimal transport plan from 1
N

∑N
i=1 δxi

to the normalized Lebesgue
measure dx. By our hypotheses, there is a mass vol(Br/2(p)) outside Br(p) that has to travel
a bigger distance than r/2 to arrive to Br/2(p). We can then bound from below the integral of
the definition of the Wasserstein distance by r

2
vol(Br/2(p)), the distance times the volume:∫

X×X

dist(x, y) dγ(x, y) ≥
∫
X\Br(p)×Br/2(p)

(r/2) dγ(x, y)

=

∫
Br/2(p)

(r/2) dy = (r/2) vol(Br/2(p)).

In the first inequality we restrict the domain of the integral, so we can bound the distance from
below. Then we just use Fubini’s theorem and the fact that γ is a transport plan to obtain the
Lebesgue measure dy after integrating with respect to x.
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By using this, we conclude with a straightforward corollary:

Corollary 4.2.1 ( [23]). Suppose xi follows a greedy sequence, and yj is any sequence omitting
an open ball. Then, there exists an N0 such that, for every N ≥ N0,

W1

(
1

N

N∑
i=1

δxi
, dx

)
< W1

(
1

N

N∑
i=1

δyj , dx

)
.

In other words, a smart choice of shops will have better results than any sequence that omits
a certain region.

Remark. Notice that in Section 1.5.1, if our rival vanishes a certain area with their finite coffee
shops, we will still win because their approximation to dx will be worse than ours. For that
reason, it is important that the rival experiences some growth during the competition.

4.3.2 Rival growth in terms of ours
We can express the number of rival coffee shops, N2, in terms of our own, N1, by defining a
function f : N → N such that f(N1) = N2. This allows us to summarize many specific cases
into a single framework.

In this subsection, we will establish conditions that f must satisfy in order for the rival to
defeat us. We divide this part into two subsections. Before presenting these conditions, we
prove a technical lemma that will be used throughout the rest of this section.

Lemma 4.1. Let µ, ν ∈ Ms(X) be two signed finite measures. Then,

W1,1
1 (µ, ν) ≥ |µ(X)− ν(X)|.

Proof. It suffices to check the result for positive measures because

|µ(X)− ν(X)| = |(µ+(X) + ν−(X))− (ν+(X) + µ−(X))|.

Now, for µ, ν ∈ M(X),

W 1,1
1 (µ, ν) = inf

|µ̃|=|ν̃|
(|µ− µ̃|+ |ν − ν̃|+W1(µ̃, ν̃))

≥ inf
|µ̃|=|ν̃|

(|µ− µ̃|+ |ν − ν̃|)

≥ inf
|µ̃|=|ν̃|

(|µ− µ̃− ν + ν̃|)

≥ inf
µ̃(X)=ν̃(X)

|(µ− µ̃− ν + ν̃) (X)|

= |µ(X)− ν(X)|.

Case f(N) ≥ f(N − 1) + 2

We present a first result for the dynamic case under the hypothesis of the rival coffee shop
complex growing a lot faster than ours. Precisely, we will suppose that f(N) ≥ f(N − 1) + 2.
That is, whenever we place a shop, our rivals will place two or more.
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Theorem 4.7 ( [23]). Let µN =
(∑N

i=1 δxi
−
∑f(N)

j=1 δyj

)
. If f(N) ≥ f(N − 1) + 2, then, for

N0 big enough, the rival shops will win for all N ≥ N0, i.e.,

W1,1
1

(
1

N + f(N)
µN , dx

)
>W1,1

1

(
1

N + f(N)
(−µN), dx

)
. (4.6)

Proof. The idea behind the proof is that our rival has a winning strategy. That is, at least he
is able to copy the placement of our N -th shop with one of his shops because in every turn
he adds at least two shops by hypothesis. So, he can copy ours and settle other shops in the
remaining non-occupied space in X . We present a formal computation of this explanation.

Suppose our sequence of shops is given by x1, . . . , xN . Then, following this procedure we
would have

y1 = x1,

yf(1)+1 = x2,

...
yf(N−1)+1 = xN ,

with every other yj filling the space in a greedy manner.
We would like to clarify two hidden implications before presenting the final inequalities.

Firstly, our hypothesis clearly implies that F (N) ≥ 2N . The other one is that we will call J
the set of indexes of yj that fills X , that is, the ones that do not copy the sequence xi. It is a
straightforward computation that the cardinality of J is |J | = f(N)−N .

Now, we are ready to finish our proof. On the one hand, choosing µ̃ = 1
f(N)−N

∑
j∈J δyj

and ν̃ = dx gives us

W1,1
1

(
1

N + f(N)
(−µ), dx

)
= inf

|µ̃|=|ν̃|
(|µ− µ̃|+ |ν − ν̃|+W1 (µ̃, ν̃))

≤

∣∣∣∣∣
(

1

f(N) +N
− 1

f(N)−N

)∑
j∈J

δyj

∣∣∣∣∣
+W1

(
1

f(N)−N

∑
j∈J

δyj , dx

)

≤ 2N

f(N) +N
+

c

Nd
≤ 2

3
+

c

Nd
,

due to Steinerberger results. On the other hand, using Lemma 4.1,

W1,1
1

(
1

N + f(N)
µ, dx

)
≥ 1 +

f(N)−N

f(N) +N
=

2f(N)

N + f(N)
≥ 1.

Finally, we observe that for any manifold X of dimension d ≥ 3 we can choose N0 such
that c

Nd <
1
3

for allN ≥ N0 (we remind that c > 0 is a constant depending only on the manifold
X). Then, for N ≥ N0, we conclude that

W1,1
1

(
1

N + f(N)
(−µ), dx

)
≤ 2

3
+

c

Nd
< 1 ≤ W1,1

1

(
1

N + f(N)
µ, dx

)
.
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Case f(N) = N +K

Now, we will suppose f(N) = N+K. That is, the rival will set one shop every time we do,
but he starts with an advantage. In certain sense, we are growing at the same speed. It seems
clear that, for big values of N the two chains of shops will be in a very similar position. For
that reason, we will study the situation for fixed N .

Theorem 4.8 ([23]). Let µN =
(∑N

i=1 δxi
−
∑N+K

j=1 δyj

)
, andN0 > 0. Then, there exist values

of K such that the rival shops will have a winning strategy for all N ≤ N0, i.e.,

W1,1
1

(
1

2N +K
µN , dx

)
>W1,1

1

(
1

2N +K
(−µN), dx

)
. (4.7)

Proof. In the same spirit as in Subsection 4.3.2, the rival has, at least, the strategy of choosing
their first K shops in a greedy manner, and then yn+K = xn for all n. In that case, µN =
−
∑K

j=1 δyj .
Now, using lemma 4.1 we can see that

W1,1
1

(
1

2N +K
µN , dx

)
≥ 1 +

K

2N +K
.

On the other hand, if we choose µ̃ = 1
K

∑K
j=1 δyj and ν̃ = dx, we obtain that

W1,1
1

(
1

2N +K
(−µ), dx

)
= inf

|µ̃|=|ν̃|
(|µ− µ̃|+ |ν − ν̃|+W1 (µ̃, ν̃))

≤

∣∣∣∣∣
(

1

2N +K
− 1

K

)∑
j∈J

δyj

∣∣∣∣∣+W1

(
1

K

K∑
j=1

δyj , dx

)

≤ 2N

2N +K
+

c

Kd
= 1− K

2N +K
+

c

Kd
.

In the last inequality we have applied the result of Brown and Steinerberger [15] to the greedy
sequence y1, . . . , yK . We recall that c is a positive constant which depends only on the manifold
X .

Combining both inequalities, we have shown that whenever

c

Kd
≤ 2N

2N +K
, (4.8)

our result holds. And, by basic calculus, we know that for a fixed N0 > 0 there exist a number
K0 > 0 such that for any K ≥ K0 and all N ≤ N0, the inequality 4.8 is verified.

We imposed f(N) ≥ f(N − 1) + 2 for two reasons: on the one hand, this restriction
implies f(N) ≥ 2N . On the other hand, due to this we were able to explicitly define the
winning sequence (??). Losing that clarity we can make a more general statement:

Corollary 4.8.1. The result also holds if lim inf f(N)
N

= λ > 1.
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Proof. The assumption lim inf f(N)
N

= λ means that f(N) will increase in a comparable way
to λN , so the rival shops will still be able to copy our locations and establish new ones in an
optimal way (possibly at a slower rate that once every turn, if λ < 2).

The bounds

W1,1
1

(
1

N + f(N)
(−µ), dx

)
≤ 2N

f(N) +N
+

c

Nd

and

W1,1
1

(
1

N + f(N)
µ, dx

)
≥ 1 +

f(N)−N

f(N) +N

from the proof of Theorem 4.7 still applies. Bounding f(N) ≥ λN−ε forN big enough yields
the result.

4.4 Discussion about the constants in the difference of Dirac
deltas

During the initial steps of the work of this project, Javier Casado and I considered three different
constants to multiply the difference of the Dirac deltas

N1∑
i=1

δxi
−

N2∑
j=1

δyj .

In this section, we present our considerations about the matter:

1. 1
N1

in the first term and 1
N2

in the second term:

The main objection to this choice is that it gives different masses to the coffee shops of
each team if N1 ̸= N2. From our perspective, this does not capture the essence of our
problem, as we consider that all coffee shops (regardless of which team they belong to)
have the same power of attraction and, formally, the same weight.

It would be interesting to consider the problem with different weights. For example, one
of the teams could be a big consolidated coffee shop chain while the other team is com-
posed of small ones. For that setting, this constant choice could possibly be appropriate.

2. 1
N1−N2

multiplying both factors:

The virtue of this constant is that it normalizes the measure and turns it into a probability
measure. In addition, it gives the same weight to each coffee shop. It seems that the fixed
case computations of this chapter hold for this constant. The problem with this choice
is the case N1 = N2, which leads to division by zero. Therefore, this constant is not
suitable for our problem.

3. 1
N1+N2

multiplying both factors:

This constant gives the correct weight to each coffee shop regardless of the team they be-
long to. It appeared when we tried to compute the optimality of all coffee shops against
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the volume measure regardless of which team they belong to. Moreover, as the denom-
inator is always positive, we can use it for every N1, N2 > 0 and if we join the masses
of the two companies it would result in N1 + N2, i.e., the total population of stores.
The combination of deltas may not be normalized, but that is not a problem after the
generalization of the Wasserstein distance.
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Conclusiones

A lo largo de esta tesis se ha trabajado con los encajes isométricos de espacios métricos dentro
de espacios ambiente conocidos tales comoL∞(X), con (X, dist) un espacio métrico compacto
–en especial se han obtenido resultados para variedades riemannianas cerradas– y espacios de
tipo Wasserstein.

El Capı́tulo 2 está dedicado a L∞(M) y el Filling Radius. Se han aportado resultados
importantes en términos de cotas a este invariante –Teoremas 2.6, 2.7– y otros en relación al
Filling Radius intermedio. Tanto L∞(M) como el Filling Radius tienen interesantes preguntas
abiertas con las que lidiar y se espera en un futuro volver a ellas con el fin de continuar con el
trabajo empezado en esta tesis.

En el Capı́tulo 3, hemos diseccionado el papel del reach en encajes isométricos de espa-
cios métricos tanto en L∞(M) como en espacios de tipo Wasserstein. Aunque los resultados
obtenidos han sido meticulosos y han ahondado bastante en sus implicaciones globales, alguna
pregunta abierta, como la consecución de reach positivo pero no infinito, puede dar lugar a
futuros proyectos.

La tesis termina en el Capı́tulo 4 con una aplicación del estudio de encajes isométricos
gracias al Problema de las cafeterı́as añadiéndole un factor de competencia. En las Secciones
4.2 y 4.3 se presentan resultados dependiendo del crecimiento de la competencia, dividiéndolos
en interesantes casos de estudio. Queda la cuestión de determinar si todos estos teoremas
pueden ser replicados para espacios más generales que variedades riemannianas.

Por tanto, el trabajo aportado en este manuscrito muestra la importancia del estudio de
encajes isométricos dentro de la geometrı́a métrica demostrando que da un enfoque bastante
fructı́fero a la hora de resolver problemas abiertos y cuestiones que, de primeras, parecen no
guardar relación con dicha técnica.
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Conclusions

Throughout this thesis, we have focused on isometric embeddings of metric spaces into well-
known ambient spaces such as L∞(X), where (X, dist) represents a compact metric space
(particularly, results have been obtained for closed Riemannian manifolds) and Wasserstein-
type spaces.

Chapter 2 is dedicated to L∞(M) and the Filling Radius. Significant results have been
provided in terms of bounds on this invariant, as shown in Theorems 2.6 and 2.7, along with
other findings related to the intermediate Filling Radius. Both L∞(M) and the Filling Radius
raise intriguing open questions to tackle, and it is expected that in the future, we will revisit
these questions to continue the work initiated in this thesis.

In Chapter 3, we have thoroughly examined the role of reach in isometric embeddings of
metric spaces, both in L∞(M) and in Wasserstein-type spaces. While the obtained results have
been meticulous and have delved deeply into their global implications, some open questions,
such as the existence of positive but non-infinite reach, may give rise to future research projects.

The thesis concludes in Chapter 4 with an application of the study of isometric embeddings
through the Coffee Shop Problem introducing a competitive factor. In Sections 4.2 and 4.3,
results are presented depending on the growth of competition, categorizing them into intriguing
case studies. The question remains whether all these theorems can be extended to more general
spaces beyond Riemannian manifolds.

Therefore, the work presented in this manuscript underscores the importance of studying
isometric embeddings within metric geometry, demonstrating that it provides a highly fruitful
approach for addressing open problems and questions that may initially appear unrelated to this
technique.
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[77] Bożena Piatek and Alicja Samulewicz. “Gluing Busemann spaces”. In: Selected prob-
lems on experimental mathematics. Wydaw. Politech. Śl., Gliwice, 2017, pp. 129–148.
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[79] Jan Rataj and Luděk Zajıček. “On the structure of sets with positive reach”. In: Math.
Nachr. 290.11-12 (2017), pp. 1806–1829. ISSN: 0025-584X. DOI: 10.1002/mana.
201600237. URL: https://doi.org/10.1002/mana.201600237.

[80] Filippo Santambrogio. Optimal transport for applied mathematicians. Vol. 87. Progress
in Nonlinear Differential Equations and their Applications. Calculus of variations, PDEs,
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