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(Topological) Data quality

• Aim: replace datasets by smaller subsets that capture the “same information”

• Question: can topology help to answer this question?

• Example: two classes and a small feed forward neural network.

• Difficult question: we focused on dimension 0.
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Fleet behavior: Navground

• Characterise autonomous wheelchair simulations via Navground (J. Guzzi, SUPSI)

• Ultimate aim: detect order vs chaos and predict likelihood of collisions or deadlocks.

• Motivation: spontaneous formation of groups in macroscopic behavior.
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Idea: relate zero-dimensional persistent homology barcodes

• Consider a pair of metric spaces (Y, dY) and (X, dX)

• Connected components can be understood by PH0(Y) and PH0(X) as well as their
respective B(Y) and B(X) barcodes.

• Question: can we relate B(Y) and B(X)?

• Is this well defined? and stable? so what?
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Vietoris-Rips filtration (1-skeleton)

• Consider a finite metric space (X, dX).
• Let VR1(X) be the one-skeleton of the Vietoris-Rips filtration, i.e. VR1(X) is a
family of graphs

VR1(X) = {VR1
r (X)}r∈[0,∞)

where there are inclusions VR1
r (X) ⊆ VR1

s (X) for all r ≤ s.
• Given r ≥ 0, the graph VR1

r (X) has
– vertices points from X
– edges [x , y ] for x , y ∈ X such that dX(x , y) ≤ r .
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Evolution of connected components

• Let (X, dX) be a finite metric space.

• Suppose that X = {x0, · · · , xn} for some n ∈ Z>0.

• Given r ≥ 0, we consider an equivalence relation ∼r on X given by x ∼r y if and
only if both x and y are path connected in VR1

r (X).
• We can represent equivalence classes of ∼r by using the minimum index on
connected components:

• We define π0(VR
1
r (X)) = X/ ∼r and denote by [xi ]r the coset of xi ∈ X.
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0-dimensional persistent homology

• Let H0(VR
1
r (X)) = Z2[π0(VR

1
r (X))] = ⟨[xi ]r | xi ∈ X⟩Z2 .

• We define the 0-dimensional persistent homology PH0(X ) to be

– the collection of Z2-vector spaces PH0(X )r := H0(VRr (X )) for all r ∈ [0,∞)
together with

– the structure maps ρrs : PH0(X )r → PH0(X )s for all r ≤ s that are induced by
the inclusions VRr (X ) ⊆ VRs(X ).

Example

Let PH0.8(X) = ⟨[x0], [x3], [x5]⟩Z2 and PH1.1(X) = ⟨[x0], [x3]⟩Z2 , together with the
structure map ρ0.8,1.1 is defined from assignments

[x0] 7→ [x0] [x3] 7→ [x3] [x5] 7→ [x3] .

Notice: component [x5] has merged to [x3] at 1.1
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Barcode of 0-dimensional persistent homology

• In our case, all classes from PH0(X) are born at 0 where
π0(VR

1
0(X)) = {[x0], . . . , [xn]}.

• We say that [xj ] ∈ π0(VR
1
0(X)) dies at b > 0 if

1) ρ0r ([xi ]) = [xi ] for all 0 ≤ r < b, and
2) ρ0b([xi ]) = [xj ] for some j < i .

• Persistence barcode: is a multiset B(X) = (SX, µX) where SX ⊂ R+ and
µX : SX → Z a multiplicity function such that,

• µX(b) = #{[xi ] ∈ π0(VR
1
0(X)) | [xi ] dies at b}

• Given a multiset (S , µ), its representation is a set

Rep(S , µ) = {(i , x) ∈ Z× S | x ∈ S and 1 ≤ i ≤ µ(x)}.
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Example of 0-dimensional persistent homology

Example

• B(X) = (SX, µX) with SX = {0.42, 0.5, 0.98, 1.3} and

• µX : SX → Z equal to 1 everywhere,

• except µX(0.5) = 2.

• RepB(X) = {(1, 0.42), (1, 0.5), (2, 0.5), (1, 0.98), (1, 1.3)} ⊂ Z× SX
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Triplet Merge Trees

• Given xi , xj ∈ X with i < j and some r ≥ 0, we write a triplet (xj , r , xi ) to indicate
that component xj is alive up to value r , where it merges with xi . That is,
[xj ] ∈ PH0(X)0 = Z2[X] is such that
ρ0s [xj ] = [xj ] for all s < r and ρ0r [xj ] = [xi ].

• We denote by TMT(X) the set of triples from VR(X).

Example

Consider X and a relabelling X̃:
– TMT(X) = {(x4, 0.42, x3), (x2, 0.5, x0), (x1, 0.5, x0), (x5, 0.98, x3), (x3, 1.3, x0)}
– TMT(X̃) = {(x3, 0.42, x0), (x2, 0.5, x1), (x5, 0.5, x1), (x4, 0.98, x0), (x1, 1.3, x0)}

12 / 45



Barcode decomposition of PH0(X)

• We define the interval module κb, for b > 0 or b = ∞, as

– κbr = Z2 for all 0 ≤ r < b and is zero otherwise, and
– the structure maps are the identities Z2 → Z2 whenever possible.

• Since X is finite, PH0(X)r is tame, in particular, it decomposes as

PH0(X) ≃

 ⊕
(i ,b)∈RepB(X)

κb

⊕ κ∞

≃

 ⊕
(xj ,bj ,xi )∈TMT(X)

κbj

⊕ κ∞

• The intervals on the barcode B(X) do not depend on the particular labelling.

• Computation: of B(X) and TMT(X) efficiently computed via minimum spanning
tree MST(X) (e.g. using union-find data from Kruskal’s method)
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Stability of PH0(X)

• The barcode is stable dB(B(X),B(Y)) ≤ dGH(X,Y), where

dB(B(X),B(Y)) = inf{ε > 0 | ∃ ε-matching between B(X) and B(Y)}

• A ε-matching µ : B(X) ↛ B(Y) consists of a bijection µ : A → B where
A ⊂ RepB(X) and B ⊂ RepB(Y), such that:

– µ(i , b) = (j , b′) implies |b − b′| < ε
– (i , a) ∈ RepB(X) \ µ−1(B) implies |a| < ε,
– (j , b) ∈ RepB(Y) \ µ(A) implies |b| < ε.
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Subsets of metric spaces

• Consider a pseudo-metric space (X, dX) together with a subset Y ⊆ X.
• There is an inclusion VR1(Y) ⊆ VR1(X).

Example

– Let Y ⊂ X ⊂ R2 where Y is indicated by the red points.

– The filtration of the pair VR(Y) ⊆ VR(X) is depicted below.
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Persistence morphism induced by Y ⊂ X

• VR(Y) ⊂ VR(X) induces a persistence morphism f : PH0(Y) → PH0(X), that is
– a collection of Z2-linear maps fr : PH0(Y)r → PH0(X)r for all r ∈ R and such

that
– given r < s, there is a commutative diagram

PH0(Y)r PH0(X)r

PH0(Y)s PH0(X)s

fr

ρrs ρrs

fs

• We can define im(f ), ker(f ) and coker(f ), e.g. im(f )r := im(fr ) for all r ∈ R.
• Intuitively, f : PH0(Y) → PH0(X) relates the (single-linkage) clusters from VR1(Y)

and VR1(X).
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Subset labels and connected components

• Y = {x0, · · · , xℓ} and X = {x0, · · · , xn} for ℓ ≤ n.

Example

Depiction of π0(VRr (X )) and π0(VRr (Z )) for varying r ≥ 0.
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Decomposition of morphisms in dimension 0

• Using the barcode decompositions, we can write f as

f :

 ⊕
(i,bi )∈RepB(Y)

κbi

⊕ κ∞ −→

 ⊕
(i,bi )∈RepB(X)

κbi

⊕ κ∞.

• This does not give information about the relation between B(Y) and B(X).
• On the other hand, using a Theorem by Jacquard, Nanda and Tillmann [4], there
exists rba ≥ 0 and d+

a , d−
b ≥ 0 such that

f ≃
(⊕

b>0

⊕
a≥b

⊕
i∈[[rba ]]

(κa → κb)

)
⊕

(⊕
b>0

⊕
j∈[[d−

b ]](0 → κb)

)
⊕
(⊕

a>0

⊕
j∈[[d+

a ]](κa → 0)

)
⊕

(
κ∞ → κ∞

)
.

• Where [[n]] = {0, . . . , n − 1} for n ∈ Z and

• κa → κb for a ≥ b are the natural persistence morphisms.
19 / 45



The matching diagram D(f ) (for Y ⊂ X)

• Using Y ⊂ X, it follows that d+
a = 0 for all a ∈ R, and so

f ≃
(⊕

b>0

⊕
a≥b

⊕
i∈[[rba ]]

(κa → κb)

)
⊕
(⊕

b>0

⊕
j∈[[d−

b ]](0 → κb)

)
⊕
(
κ∞ → κ∞

)
.

• We define the matching diagram D(f ) as a multiset (SD , µD) consisting of

– a set SD = {(a, b) | rab ̸= 0} ∪ {(∞, b) | d−
b ̸= 0} ⊂ R2,

– a multiplicity function µD : SD → Z>0 given by

µD(a, b) = rab , and µD(∞, b) = d−
b .

• There is an “injection” of barcodes B(Y) ↪→ B(X)
– Well-defined: a ≥ 0 fixed:

∑
b≤a µ

D(a, b) = µY(a)

– Injective: b ≥ 0 fixed:
∑

b≤a µ
D(a, b) ≤ µX(b)
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Example of matching diagram

Example

• We decompose f : PH0(Y) → PH0(X) as

f ≃ (κ2.24 → κ1.11)⊕ (κ1.19 → κ1.19)⊕ (0 → κ1.03)⊕ (0 → κ0.5)⊕ (0 → κ0.5)

• SD = {(2.24, 1.11), (1.19, 1.19), (0, 1.03), (0, 0.5)}
• Except µD(0, 0.5) = 2, all multiplicities are equal to 1.
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Relation of D(f ) with im(f ), ker(f ), coker(f ), PH0(Y) and
PH0(X)
• We can rewrite f as follows:

f ≃
( ⊕

(a,b)∈SD

a ̸=∞

⊕
i∈[[µD (a,b)]]

(κa → κb)

)
⊕
( ⊕

(∞,b)∈SD

⊕
i∈[[µD (∞,b)]]

(0 → κb)

)
⊕
(
κ∞ → κ∞

)
.

• im(f ) ≃
(⊕

(a,b)∈SD

a ̸=∞

⊕
i∈[[µD(a,b)]] κb

)
⊕ κ∞

• ker(f ) ≃
⊕

(a,b)∈SD

a ̸=∞

⊕
i∈[[µD(a,b)]] κ[b,a)

• coker(f ) ≃
⊕

(∞,b)∈SD

⊕
i∈[[µD(∞,b)]] κb

• PH0(Y) ≃
(⊕

(a,b)∈SD

a ̸=∞

⊕
i∈[[µD(a,b)]] κa

)
⊕ κ∞

• PH0(X) ≃
(⊕

(a,b)∈SD

a ̸=∞

⊕
i∈[[µD ((a,b))]] κb

)
⊕
(⊕

(∞,b)∈SD

⊕
i∈[[µD (∞,b)]] κb

)
⊕ κ∞
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The induced block function M0
f

• Let (Y, dY) and (X, dX) be a pair of finite metric spaces.

• Let f0 : Y → X be a set map (ignoring metrics).

• We define the induced block function M0
f : R2 → Z≥0 as, given a, b ∈ R,

M0
f (a, b) = dim

(
f (ker+a (V )) ∩ ker+b (U)

f (ker−a (V )) ∩ ker+b (U) + f (ker+a (V )) ∩ ker−b (U)

)
.

• Where: f (ker±a (Y)) and ker±b (X) are subspaces from PH0(X) ≃ Z2[X] given by

– f (ker+a (Y)) = ⟨[f0(xj)] + [f0(xi )]|(xj , r , xi ) ∈ TMT(Y) such that r ≤ a⟩
– f (ker−a (Y)) = ⟨[f0(xj)] + [f0(xi )]|(xj , r , xi ) ∈ TMT(Y) such that r < a⟩
– ker+b (X) = ⟨[xj ] + [xi ]|(xj , r , xi ) ∈ TMT(X) such that r ≤ a⟩
– ker−a (X) = ⟨[xj ] + [xi ]|(xj , r , xi ) ∈ TMT(X) such that r < a⟩

• NB: One can check f (ker+b (Y)) = f (ker(ρY0b)), etc, which means that M0
f does not

depend on the particular indexing.
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M0
f and D(f )

Define the matching diagram as a multiset D(f ) = (SD , µD) where

• SD ⊆ R× R with non-zero multiplicity, where:

• µD((a, b)) = M0
f (a, b) for all (a, b) ∈ R2 and

• µD((∞, b)) = µX(b)−
∑

a∈RM0
f (a, b) for all b ≥ 0.

Remarks:

• M0
f and D(f ) are defined for any pair of metric spaces (Y, dY) and (X, dX) together

with a set map f0 : Y → X.
• In particular, there might be no persistence morphism.

• If f0 : Y → X is one-Lipschitz, then it induces a persistence morphism
f : PH0(Y) → PH0(X) and D(f ) coincides with the definition using the direct sum
decomposition of f .
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Example computation of M0
f (Part 0)

Example

Consider Y ⊂ X as in the previous section.
One can compute TMT(Y) = {(x2, 1.19, x0), (x1, 2.24, x0)} and
TMT(X) = {(x5, 0.5, x3), (x4, 0.5, x3), (x3, 1.03, x2), (x2, 1.11, x1), (x1, 1.19, x0)}.
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Example computation of M0
f (Part I)

Example

Recall TMT(Y) = {(x2, 1.19, x0), (x1, 2.24, x0)} and
TMT(X) = {(x5, 0.5, x3), (x4, 0.5, x3), (x3, 1.03, x2), (x2, 1.11, x1), (x1, 1.19, x0)}. Then, we have

f (ker−(Y)1.19) =0

f (ker+(Y)1.19) =⟨[x2] + [x0]⟩
ker−(X)1.19 =⟨[x5] + [x3], [x4] + [x3], [x3] + [x2], [x2] + [x1]⟩
ker+(X)1.19 =⟨[x5] + [x3], [x4] + [x3], [x3] + [x2], [x2] + [x1], [x1] + [x0]⟩

So that

M0
f (1.19, 1.19) = dim

(
⟨[x2] + [x0]⟩

0 + 0

)
= dim(⟨[x2] + [x0]⟩) = 1 .
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Example computation of M0
f (Part II)

Example

Recall TMT(Y) = {(x2, 1.19, x0), (x1, 2.24, x0)} and
TMT(X) = {(x5, 0.5, x3), (x4, 0.5, x3), (x3, 1.03, x2), (x2, 1.11, x1), (x1, 1.19, x0)}. Then, we have

f (ker−(Y)2.24) =⟨[x2] + [x0]⟩
f (ker+(Y)2.24) =⟨[x2] + [x0], [x1] + [x0]⟩

ker−(X)1.19 =⟨[x5] + [x3], [x4] + [x3], [x3] + [x2], [x2] + [x1]⟩
ker+(X)1.19 =⟨[x5] + [x3], [x4] + [x3], [x3] + [x2], [x2] + [x1], [x1] + [x0]⟩

So that

M0
f (1.19, 2.24) = dim

(
⟨[x2] + [x0], [x1] + [x0]⟩

⟨[x2] + [x0]⟩+ ⟨[x2] + [x1]⟩

)
= 0 .
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Example computation of M0
f (Part III)

Example

All in all, one can check that M0
f (1.19, 1.19) = M0

f (2.24, 1.11) = 1 while M0
f (a, b) = 0

for any other pair in R2. Thus, we recover the matching diagram D(f ) from the previous
section

M0
f : B(Y) ↪→ B(X)
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Computation of M0
f

• Github: https://github.com/Cimagroup/tdqual

• Small python script: 282 lines, most for generating plots.

• Algorithm:

– Compute the minimum spanning trees MST(Y) and MST(X) of VR(Y) and
VR(X) respectively.

– Compute TMT(Y) and TMT(X) from MST(Y) and MST(X).
– Compute the matrix F associated to PH0(Y) → PH0(X) using TMT(Y) and
TMT(X).

– Perform a Gaussian reduction of F and obtain R

Using R we obtain M0
f

M0
f (a, b) = #


pivots from R in columns labelled by (i , a) ∈ RepB(Y)
and rows labelled by (j , b) ∈ RepB(X)
for all t ∈ [[µY(a)]] and r ∈ [[µX(b)]]

 .
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Runtimes

Size Prop Time (s) Time (s) Time (s) Time (s)
Dim 100 Dim 200 Dim 500 Dim 1000

1000

0.1 0.2137 0.2251 0.2906 0.4167
0.2 0.2205 0.2337 0.3025 0.4266
0.5 0.2614 0.2770 0.3672 0.5181
0.8 0.3420 0.3647 0.4785 0.6791

5000

0.1 6.8683 7.4391 9.3776 13.2139
0.2 7.1100 7.6029 9.6264 13.5654
0.5 8.3384 9.0599 11.3875 15.9382
0.8 11.0920 11.9642 15.1606 21.0903

10000

0.1 30.9312 33.8928 43.3496 59.5236
0.2 31.7921 34.5644 44.4252 61.1580
0.5 37.6867 41.3084 52.5283 72.4249
0.8 50.1831 54.3484 69.9975 96.1254
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Stability of D(f ): (Recap) Gromov-Hausdorff distance

• Let (M, dM) be a finite metric space.

• Given a subset A ⊆ M and a point x ∈ M we define the distance

dM(x ,M) = min{dM(x ,m) for m ∈ M} .

• Given two subsets A,B ⊆ M, we define the Hausdorff distance

dM
H (A,B) = max{max{dM(a,B)|a ∈ A},max{dM(b,A)|b ∈ B}}

• Given two metric spaces (Z , dZ ) and (Z ′, dZ ′
), we consider isometric embeddings

γZ : Z ↪→ M and γZ ′ : Z ′ ↪→ M for some (M, dM)

• We define the Gromov-Hausdorff distance

dGH(Z ,Z
′) = inf

M,γZ ,γZ ′

{
dM
H (γZ (Z ), γZ ′(Z ′))

}
.
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Stability of D(f )

Given (X ,Z ) and (X ′,Z ′) such that X ⊆ Z and X ′ ⊆ Z ′, we define the
Gromov-Hausdorff distance dGH((X ,Z ), (X ′,Z ′)) as

inf
M,γZ ,γZ ′

{
max

{
dM
H (γZ (X ), γZ ′(X ′)), dM

H (γZ (Z ), γZ ′(Z ′))
}}

.

Theorem

Suppose dGH((X ,Z ), (X ′,Z ′)) < ε. There exists a partial matching
σD(f ) : RepD(f ) ↛ RepD(f ′) such that

• for (i , (a, b)) ∈ coim(σD(f )), writing σD(f )(i , (a, b)) = (j , (a′, b′)), we have that
(either a = a′ = ∞ or |a− a′| < 2ε) and |b − b′| < 2ε.

• for (i , (a, b)) ∈ RepD(f ) \ coim(σD(f )) then (either a = ∞ or a < 2ε) and b < 2ε.

• for (j , (a′, b′)) ∈ RepD(f ′) \ im(σD(f )) then (either a′ = ∞ or a′ < 2ε) and b′ < 2ε.
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Stability example

Example

Suppose that ε ∼ 0.27. We consider two point clouds and check stability.

a b a′ b′ |a− a′| |b − b′|
1.19 1.19 1.03 0.89 0.16 0.30
2.24 1.11 2.21 1.06 0.02 0.05

− − 0.27 0.27 − −
inf 1.03 inf 0.95 nan 0.07
inf 0.50 inf 0.36 nan 0.14
inf 0.50 inf 0.34 nan 0.16
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Example: Housing dataset

• H contains 20648 real-valued 8-dimensional samples.
• Divided into three classes.
• We took a random sample XH of size 1000 as training set.
• Trained a MLP and obtained the following confusion matrix:
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Example: Housing Dataset (Continued)

• We computed the matching diagram for the three classes separately.

• The third class has a very large interval in coker(f ) compared to the other two.

• Also, the larger interval in ker(f ) is in the third class as well.
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Fleet analysis

• We consider the output from Navground simulations.

• This consists of point clouds {Xt}Nt=0 where

• Xt ⊂ R6, given by positions, angle, speed components and angular speed.

• Given two timesteps T1 < T2 let the Euclidean distances of XT1 and XT2 be given by
matrices DT1 and DT2 respectively.

• Agent movements leads to an isomorphism XT1 → XT2

• We analyse the evolution of {Xt}Nt=0 by keeping the difference T2 − T1 constant and
changing T1.

• We tried this approach in three scenarios: Corridor, Cross and CrossTorus.

• We compare four behaviors: ORCA, HL, HRVO and Social Force.
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Example: Corridor using persistence images
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Example: CrossTorus using absolute sum of differences in D(f )
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Conclusions and future work

• D(f ) is versatile; can be applied in several examples.

• D(f ) can be computed using minimum spanning trees and a simple Gausian
reduction.

• Stability also works for set injections Y ↪→ X, can it be generalised?

• What about metrics that do not satisfy the triangle inequality? e.g. when using
Dynamic Time Warping?

• Ongoing work: extend matching diagrams to higher dimensions or when points are
allowed to be born later than 0.

• It would be good to see/work on more applications of D(f ) in the future!

• What about other clustering techniques?
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Thank You

Email: alvaro.torras-casas@inserm.fr

Website: https://alvaro-torras-casas.org/
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